究竟啥才是互联网架构“高可用”

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 高可用HA(High Availability)是分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计减少系统不能提供服务的时间。

一、什么是高可用

高可用HA(High Availability)是分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计减少系统不能提供服务的时间。

假设系统一直能够提供服务,我们说系统的可用性是100%。如果系统每运行100个时间单位,会有1个时间单位无法提供服务,我们说系统的可用性是99%。

很多公司的高可用目标是4个9,也就是99.99%,这就意味着,系统的年停机时间为8.76个小时。

百度的搜索首页,是业内公认高可用保障非常出色的系统,甚至人们会通过 www.baidu.com 能不能访问来判断“网络的连通性”,百度高可用的服务让人留下啦“网络通畅,百度就能访问”,“百度打不开,应该是网络连不上”的印象,这其实是对百度HA最高的褒奖。

二、如何保障系统的高可用

我们都知道,单点是系统高可用的大敌,单点往往是系统高可用最大的风险和敌人,应该尽量在系统设计的过程中避免单点。方法论上,高可用保证的原则是“集群化”,或者叫“冗余”:只有一个单点,挂了服务会受影响;如果有冗余备份,挂了还有其他backup能够顶上。

保证系统高可用,架构设计的核心准则是:冗余。

有了冗余之后,还不够,每次出现故障需要人工介入恢复势必会增加系统的不可服务实践。所以,又往往是通过“自动故障转移”来实现系统的高可用。

接下来我们看下典型互联网架构中,如何通过冗余+自动故障转移来保证系统的高可用特性。

三、常见的互联网分层架构

image.png

常见互联网分布式架构如上,分为:

(1)客户端层:典型调用方是浏览器browser或者手机应用APP;

(2)反向代理层:系统入口,反向代理;

(3)站点应用层:实现核心应用逻辑,返回html或者json;

(4)服务层:如果实现了服务化,就有这一层;

(5)数据-缓存层:缓存加速访问存储;

(6)数据-数据库层:数据库固化数据存储;

整个系统的高可用,又是通过每一层的冗余+自动故障转移来综合实现的。

四、分层高可用架构实践

【客户端层->反向代理层】的高可用
image.png

【客户端层】到【反向代理层】的高可用,是通过反向代理层的冗余来实现的。以nginx为例:有两台nginx,一台对线上提供服务,另一台冗余以保证高可用,常见的实践是keepalived存活探测,相同virtual IP提供服务。

image.png

自动故障转移:当nginx挂了的时候,keepalived能够探测到,会自动的进行故障转移,将流量自动迁移到shadow-nginx,由于使用的是相同的virtual IP,这个切换过程对调用方是透明的。

【反向代理层->站点层】的高可用
image.png

【反向代理层】到【站点层】的高可用,是通过站点层的冗余来实现的。假设反向代理层是nginx,nginx.conf里能够配置多个web后端,并且nginx能够探测到多个后端的存活性。

image.png

自动故障转移:当web-server挂了的时候,nginx能够探测到,会自动的进行故障转移,将流量自动迁移到其他的web-server,整个过程由nginx自动完成,对调用方是透明的。

【站点层->服务层】的高可用

image.png

【站点层】到【服务层】的高可用,是通过服务层的冗余来实现的。“服务连接池”会建立与下游服务多个连接,每次请求会“随机”选取连接来访问下游服务。

image.png

自动故障转移:当service挂了的时候,service-connection-pool能够探测到,会自动的进行故障转移,将流量自动迁移到其他的service,整个过程由连接池自动完成,对调用方是透明的(所以说RPC-client中的服务连接池是很重要的基础组件)。

【服务层>缓存层】的高可用

image.png

【服务层】到【缓存层】的高可用,是通过缓存数据的冗余来实现的。

缓存层的数据冗余又有几种方式:第一种是利用客户端的封装,service对cache进行双读或者双写。

image.png

缓存层也可以通过支持主从同步的缓存集群来解决缓存层的高可用问题。

以redis为例,redis天然支持主从同步,redis官方也有sentinel哨兵机制,来做redis的存活性检测。

image.png

自动故障转移:当redis主挂了的时候,sentinel能够探测到,会通知调用方访问新的redis,整个过程由sentinel和redis集群配合完成,对调用方是透明的。

说完缓存的高可用,这里要多说一句,业务对缓存并不一定有“高可用”要求,更多的对缓存的使用场景,是用来“加速数据访问”:把一部分数据放到缓存里,如果缓存挂了或者缓存没有命中,是可以去后端的数据库中再取数据的。

这类允许“cache miss”的业务场景,缓存架构的建议是:

image.png

将kv缓存封装成服务集群,上游设置一个代理(代理可以用集群冗余的方式保证高可用),代理的后端根据缓存访问的key水平切分成若干个实例,每个实例的访问并不做高可用。

image.png

缓存实例挂了屏蔽:当有水平切分的实例挂掉时,代理层直接返回cache miss,此时缓存挂掉对调用方也是透明的。key水平切分实例减少,不建议做re-hash,这样容易引发缓存数据的不一致。

【服务层>数据库层】的高可用

大部分互联网技术,数据库层都用了“主从同步,读写分离”架构,所以数据库层的高可用,又分为“读库高可用”与“写库高可用”两类。

【服务层>数据库层“读”】的高可用

image.png

【服务层】到【数据库读】的高可用,是通过读库的冗余来实现的。

既然冗余了读库,一般来说就至少有2个从库,“数据库连接池”会建立与读库多个连接,每次请求会路由到这些读库。

image.png

自动故障转移:当读库挂了的时候,db-connection-pool能够探测到,会自动的进行故障转移,将流量自动迁移到其他的读库,整个过程由连接池自动完成,对调用方是透明的(所以说DAO中的数据库连接池是很重要的基础组件)。

【服务层>数据库层“写”】的高可用
image.png

【服务层】到【数据库写】的高可用,是通过写库的冗余来实现的。

以mysql为例,可以设置两个mysql双主同步,一台对线上提供服务,另一台冗余以保证高可用,常见的实践是keepalived存活探测,相同virtual IP提供服务。

image.png

自动故障转移:当写库挂了的时候,keepalived能够探测到,会自动的进行故障转移,将流量自动迁移到shadow-db-master,由于使用的是相同的virtual IP,这个切换过程对调用方是透明的。

五、总结

高可用HA(High Availability)是分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计减少系统不能提供服务的时间。

方法论上,高可用是通过冗余+自动故障转移来实现的。

整个互联网分层系统架构的高可用,又是通过每一层的冗余+自动故障转移来综合实现的,具体的:

(1)【客户端层】到【反向代理层】的高可用,是通过反向代理层的冗余实现的,常见实践是keepalived + virtual IP自动故障转移;

(2)【反向代理层】到【站点层】的高可用,是通过站点层的冗余实现的,常见实践是nginx与web-server之间的存活性探测与自动故障转移;

(3)【站点层】到【服务层】的高可用,是通过服务层的冗余实现的,常见实践是通过service-connection-pool来保证自动故障转移;

(4)【服务层】到【缓存层】的高可用,是通过缓存数据的冗余实现的,常见实践是缓存客户端双读双写,或者利用缓存集群的主从数据同步与sentinel保活与自动故障转移;更多的业务场景,对缓存没有高可用要求,可以使用缓存服务化来对调用方屏蔽底层复杂性;

(5)【服务层】到【数据库“读”】的高可用,是通过读库的冗余实现的,常见实践是通过db-connection-pool来保证自动故障转移;

(6)【服务层】到【数据库“写”】的高可用,是通过写库的冗余实现的,常见实践是keepalived + virtual IP自动故障转移;

末了,希望文章的思路是清晰的,希望大家对高可用的概念和实践有个系统的认识,感谢大家。

image.png

架构师之路-分享可落地的技术文章

目录
相关文章
|
缓存 Java 应用服务中间件
面试官:如何实现多级缓存?
面试官:如何实现多级缓存?
445 1
|
5月前
|
SQL 机器学习/深度学习 监控
构建数据中枢:数据中台指标体系如何赋能企业运营
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
存储 NoSQL 关系型数据库
为什么MySQL不使用红黑树做索引
本文详细探讨了MySQL索引机制,解释了为何添加索引能提升查询效率。索引如同数据库的“目录”,在数据量庞大时提高查询速度。文中介绍了常见索引数据结构:哈希表、有序数组和搜索树(包括二叉树、平衡二叉树、红黑树、B-树和B+树)。重点分析了B+树在MyISAM和InnoDB引擎中的应用,并讨论了聚簇索引、非聚簇索引、联合索引及最左前缀原则。最后,还介绍了LSM-Tree在高频写入场景下的优势。通过对比多种数据结构,帮助理解不同场景下的索引选择。
365 6
|
数据采集 Web App开发 JavaScript
Puppeteer的高级用法:如何在Node.js中实现复杂的Web Scraping
随着互联网的发展,网页数据抓取已成为数据分析和市场调研的关键手段。Puppeteer是一款由Google开发的无头浏览器工具,可在Node.js环境中模拟用户行为,高效抓取网页数据。本文将介绍如何利用Puppeteer的高级功能,通过设置代理IP、User-Agent和Cookies等技术,实现复杂的Web Scraping任务,并提供示例代码,展示如何使用亿牛云的爬虫代理来提高爬虫的成功率。通过合理配置这些参数,开发者可以有效规避目标网站的反爬机制,提升数据抓取效率。
919 4
Puppeteer的高级用法:如何在Node.js中实现复杂的Web Scraping
|
存储 Ubuntu 安全
如何配置 ProFTPd 以使用 SFTP 而不是 FTP
如何配置 ProFTPd 以使用 SFTP 而不是 FTP
446 0
|
11月前
|
容灾 测试技术 数据库
怎么保证后端服务稳定性,怎么做容灾
【10月更文挑战第28天】保证后端服务稳定性及做好容灾措施是一个系统工程,需要从多个方面进行考虑和实施
|
11月前
|
数据采集 机器学习/深度学习 供应链
用Puppeteer点击与数据爬取:实现动态网页交互
本文介绍了如何使用Puppeteer和代理IP抓取51job招聘信息。Puppeteer作为强大的浏览器自动化工具,能模拟用户操作、加载动态数据,结合代理IP技术可以提高抓取成功率并避免IP封禁。文章详细阐述了招聘信息的价值和市场应用,以及大数据分析在招聘信息采集中的应用。通过具体实现步骤和示例代码,展示了如何设置代理、模拟用户操作、抓取和分析数据,为企业和求职者提供有价值的市场洞察。
493 1
用Puppeteer点击与数据爬取:实现动态网页交互
|
SQL 关系型数据库 MySQL
详解MySQL覆盖索引、索引下推
1.覆盖索引 1.1.概述 覆盖索引,是为了避免“回表查询”,从而降低查询耗时的一种使用索引的方法,所以要聊覆盖索引首先我们要知道什么是"回表查询,“回表查询”是因为MySQL的索引结构决定的,是因为非聚集索引要找聚集索引拿数据而出现的现象,所以我们又要先了解MySQL中的聚集索引和非聚集索引。 文章的脉络就是先聊聚集索引、非聚集索引是怎么带来了“回表查询”的问题,然后怎么用用覆盖索引解决这个问题。
2185 0
|
数据采集 缓存 API
淘宝商品详情数据(实时更新,缓存数据)
淘宝商品详情数据,关键用于电商业务和市场分析,包括属性、价格、库存等信息。可通过淘宝开放平台API注册获取权限,调用如`taobao.item.get`接口,或使用爬虫技术。数据可实时更新,也有缓存选项。注意API权限、数据安全和调用限制。第三方服务也是获取数据的途径,但可能非实时且成本高。有效利用数据支持决策和分析。