Python+OpenCV教程基础篇:图像混合

简介: 如果你也有想分享的干货,可以登录天池实验室(notebook),包括赛题的理解、数据分析及可视化、算法模型的分析以及一些核心的思路等内容。

学习图片间的数学运算,图像混合。图片等可到源码处下载。

image.png

1、目标

  • 图片间的数学运算,如相加、按位运算等

  • OpenCV函数:cv2.add(), cv2.addWeighted(), cv2.bitwise_and()

2、教程

首先恭喜你已经完成了入门篇的学习噢,接下来我们学习一些OpenCV的基础内容,加油(ง •_•)ง

图片相加

要叠加两张图片,可以用cv2.add()函数,相加两幅图片的形状(高度/宽度/通道数)必须相同。numpy中可以直接用res = img + img1相加,但这两者的结果并不相同:

import cv2
import numpy as np 

x = np.uint8([250])
y = np.uint8([10])

print(cv2.add(x, y))  # 250+10 = 260 => 255
print(x + y)  # 250+10 = 260 % 256 = 4

如果是二值化图片(只有0和255两种值),两者结果是一样的(用numpy的方式更简便一些)。

图像混合

图像混合cv2.addWeighted()也是一种图片相加的操作,只不过两幅图片的权重不一样,γ相当于一个修正值:

dst=α×img1+β×img2+γ

img1 = cv2.imread('lena_small.jpg')
img2 = cv2.imread('opencv-logo-white.png')

res = cv2.addWeighted(img1, 0.6, img2, 0.4, 0)

image.png

经验之谈:α和β都等于1时,就相当于图片相加。

按位操作

按位操作包括按位与/或/非/异或操作,有什么用途呢?比如说我们要实现下图的效果:
image.png

如果将两幅图片直接相加会改变图片的颜色,如果用图像混合,则会改变图片的透明度,所以我们需要用按位操作。首先来了解一下掩膜(mask)的概念:掩膜是用一副二值化图片对另外一幅图片进行局部的遮挡,看下图就一目了然了:
image.png

所以我们的思路就是把原图中要放logo的区域抠出来,再把logo放进去就行了:

img1 = cv2.imread('lena.jpg')
img2 = cv2.imread('opencv-logo-white.png')

# 把logo放在左上角,所以我们只关心这一块区域
rows, cols = img2.shape[:2]
roi = img1[:rows, :cols]

# 创建掩膜
img2gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
ret, mask = cv2.threshold(img2gray, 10, 255, cv2.THRESH_BINARY)
mask_inv = cv2.bitwise_not(mask)

# 保留除logo外的背景
img1_bg = cv2.bitwise_and(roi, roi, mask=mask_inv)
dst = cv2.add(img1_bg, img2)  # 进行融合
img1[:rows, :cols] = dst  # 融合后放在原图上

经验之谈:掩膜的概念在图像混合/叠加的场景下使用较多,可以多多练习噢!

3、小结

cv2.add()用来叠加两幅图片,cv2.addWeighted()也是叠加两幅图片,但两幅图片的权重不一样。

cv2.bitwise_and(),cv2.bitwise_not(),cv2.bitwise_or(),

cv2.bitwise_xor()分别执行按位与/或/非/异或运算。掩膜就是用来对图片进行全局或局部的遮挡。

文章转载自: EX2TRON'S BLOG

目录
相关文章
|
5天前
|
Python
SciPy 教程 之 Scipy 显著性检验 6
显著性检验是统计学中用于判断样本与总体假设间是否存在显著差异的方法。SciPy的scipy.stats模块提供了执行显著性检验的工具,如T检验,用于比较两组数据的均值是否来自同一分布。通过ttest_ind()函数,可以获取两样本的t统计量和p值,进而判断差异是否显著。示例代码展示了如何使用该函数进行T检验并输出结果。
9 1
|
7天前
|
Python
SciPy 教程 之 Scipy 显著性检验 3
本教程介绍Scipy显著性检验,包括其基本概念、原理及应用。显著性检验用于判断样本与总体假设间的差异是否显著,是统计学中的重要工具。Scipy通过`scipy.stats`模块提供了相关功能,支持双边检验等方法。
15 1
|
9天前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 插值 2
SciPy插值教程:介绍插值概念及其在数值分析中的应用,特别是在处理数据缺失时的插补和平滑数据集。SciPy的`scipy.interpolate`模块提供了强大的插值功能,如一维插值和样条插值。通过`UnivariateSpline()`函数,可以轻松实现单变量插值,示例代码展示了如何对非线性点进行插值计算。
12 3
|
12天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 空间数据 4
本教程介绍了SciPy的空间数据处理功能,主要通过scipy.spatial模块实现。内容涵盖空间数据的基本概念、距离矩阵的定义及其在生物信息学中的应用,以及如何计算欧几里得距离。示例代码展示了如何使用SciPy计算两点间的欧几里得距离。
29 5
|
11天前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 空间数据 6
本教程介绍了SciPy处理空间数据的方法,包括使用scipy.spatial模块进行点位置判断、最近点计算等内容。还详细讲解了距离矩阵的概念及其应用,如在生物信息学中表示蛋白质结构等。最后,通过实例演示了如何计算两点间的余弦距离。
23 3
|
10天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 空间数据 7
本教程介绍了SciPy的空间数据处理功能,涵盖如何使用`scipy.spatial`模块进行点的位置判断、最近点计算等操作。还详细解释了距离矩阵的概念及其在生物信息学中的应用,以及汉明距离的定义和计算方法。示例代码展示了如何计算两个点之间的汉明距离。
19 1
|
12天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
38 3
|
14天前
|
Python
SciPy 教程 之 SciPy 图结构 7
《SciPy 教程 之 SciPy 图结构 7》介绍了 SciPy 中处理图结构的方法。图是由节点和边组成的集合,用于表示对象及其之间的关系。scipy.sparse.csgraph 模块提供了多种图处理功能,如 `breadth_first_order()` 方法可按广度优先顺序遍历图。示例代码展示了如何使用该方法从给定的邻接矩阵中获取广度优先遍历的顺序。
25 2
|
7天前
|
Python
SciPy 教程 之 Scipy 显著性检验 5
显著性检验用于判断样本与总体假设间的差异是否由随机变异引起,或是假设与真实情况不符所致。SciPy通过scipy.stats模块提供显著性检验功能,P值用于衡量数据接近极端程度,与alpha值对比以决定统计显著性。
11 0
|
8天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 插值 3
本教程介绍了SciPy中的插值方法,包括什么是插值及其在数据处理和机器学习中的应用。通过 `scipy.interpolate` 模块,特别是 `Rbf()` 函数,展示了如何实现径向基函数插值,以平滑数据集中的离散点。示例代码演示了如何使用 `Rbf()` 函数进行插值计算。
16 0
下一篇
无影云桌面