【Hadoop Summit Tokyo 2016】将HDFS演化成为广义存储子系统

简介: 本讲义出自Sanjay Radia在Hadoop Summit Tokyo 2016上的演讲,主要介绍了HDFS的相关知识以及HDFS的过去以及未来发展的动机,分享了HDFS的优势所在以及面对的主要挑战,并分享了弹性的HDFS以及泛化存储层的存储容器。

本讲义出自Sanjay Radia在Hadoop Summit Tokyo 2016上的演讲,主要介绍了HDFS的相关知识以及HDFS的过去以及未来发展的动机,分享了HDFS的优势所在以及面对的主要挑战,并分享了弹性的HDFS以及泛化存储层的存储容器。

ee45d569e75932b5b570835f4ff06faa40def85d

8a207eba3e44e4960a9a29a7286fe3881a5c7e8b

e685bb0246e6ec2d5806b8d11f2c6cba9be4d769

7c4bd92bdfb969144257ed3c71345e412f255ddd

e74d73079e4ccb4d15ea3d3759b2bbf888ed0979

91d96711fc61d1abd3d105154a8c891ceaa3f6dd

cba86c41588c937541410f94b8cff47bdab0c5e6

78e22169106d61fc902581df0069feeac6a8d32b

3bb112f2b8a90f1771aab0f29e6e467da6ea0304

5a37a84f3693803526d08302204b049e8c336937

06ff5899099a55a59916083d2f08b5a1ab7bf30f

06e06b2073d1368dcf98ebfb643358714588dce2

61c4ae49e8f28426e6ea3980236187b3de2fb99c

6fc198914eff3451da6e843d7c9b9bfedaefda6f

dc463dec44f4fddc00e284efb128687714e493b1

ae3fb5672ebe49741e9b820bb0242be2ec0f6c64

5efb8bb16f4689e3603d3f87312ff1e1d156259a

f737f272610b4dd758dab87ae596c60acd6ed6c7

8658de8ce2046e93eb4052634703d3b8a4795ea7

857ea442b4dd71fb559e24b7543cd53473f25fe9

fde8b9f158460beb76a7b82e26164d6e4e251451

48ba6472d354e2a238054d907a7efa0d33e2c010



相关文章
|
3月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
206 6
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
134 0
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
59 0
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
77 0
|
3月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
95 2
|
21天前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
59 4
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
145 2
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
117 1
|
3月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
94 1
|
3月前
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
100 5