菜鸟的Hadoop快速入门

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 一、相关概念 1、大数据 大数据是一门概念,也是一门技术,是以Hadoop为代表的大数据平台框架上进行各种数据分析的技术。 大数据包括了以Hadoop和Spark为代表的基础大数据框架,还包括实时数据处理,离线数据处理,数据分析,数据挖掘和用机器算法进行预测分析等技术。

一、相关概念

1、大数据

大数据是一门概念,也是一门技术,是以Hadoop为代表的大数据平台框架上进行各种数据分析的技术。

大数据包括了以Hadoop和Spark为代表的基础大数据框架,还包括实时数据处理,离线数据处理,数据分析,数据挖掘和用机器算法进行预测分析等技术。

2、Hadoop

Hadoop是一个开源的大数据框架,是一个分布式计算的解决方案。

Hadoop的两个核心解决了数据存储问题(HDFS分布式文件系统)和分布式计算问题(MapRe-duce)。

举例1:用户想要获取某个路径的数据,数据存放在很多的机器上,作为用户不用考虑在哪台机器上,HD-FS自动搞定。

举例2:如果一个100p的文件,希望过滤出含有Hadoop字符串的行。这种场景下,HDFS分布式存储,突破了服务器硬盘大小的限制,解决了单台机器无法存储大文件的问题,同时MapReduce分布式计算可以将大数据量的作业先分片计算,最后汇总输出。

二、Hadoop特点

优点

1、支持超大文件。HDFS存储的文件可以支持TB和PB级别的数据。

2、检测和快速应对硬件故障。数据备份机制,NameNode通过心跳机制来检测DataNode是否还存在。

3、高扩展性。可建构在廉价机上,实现线性(横向)扩展,当集群增加新节点之后,NameNode也可以感知,将数据分发和备份到相应的节点上。

4、成熟的生态圈。借助开源的力量,围绕Hadoop衍生的一些小工具。

缺点

1、不能做到低延迟。高数据吞吐量做了优化,牺牲了获取数据的延迟。

2、不适合大量的小文件存储。

3、文件修改效率低。HDFS适合一次写入,多次读取的场景。

三、HDFS介绍

1、HDFS框架分析

HDFS是Master和Slave的主从结构。主要由Name-Node、Secondary NameNode、DataNode构成。

NameNode

管理HDFS的名称空间和数据块映射信存储元数据与文件到数据块映射的地方。

如果NameNode挂掉了,文件就会无法重组,怎么办?有哪些容错机制?

Hadoop可以配置成HA即高可用集群,集群中有两个NameNode节点,一台active主节点,另一台stan-dby备用节点,两者数据时刻保持一致。当主节点不可用时,备用节点马上自动切换,用户感知不到,避免了NameNode的单点问题。

Secondary NameNode

辅助NameNode,分担NameNode工作,紧急情况下可辅助恢复NameNode。

DataNode

Slave节点,实际存储数据、执行数据块的读写并汇报存储信息给NameNode。

2、HDFS文件读写

文件按照数据块的方式进行存储在DataNode上,数据块是抽象块,作为存储和传输单元,而并非整个文件。

文件为什么要按照块来存储呢?

首先屏蔽了文件的概念,简化存储系统的设计,比如100T的文件大于磁盘的存储,需要把文件分成多个数据块进而存储到多个磁盘;为了保证数据的安全,需要备份的,而数据块非常适用于数据的备份,进而提升数据的容错能力和可用性。

数据块大小设置如何考虑?

文件数据块大小如果太小,一般的文件也就会被分成多个数据块,那么在访问的时候也就要访问多个数据块地址,这样效率不高,同时也会对NameNode的内存消耗比较严重;数据块设置得太大的话,对并行的支持就不太好了,同时系统如果重启需要加载数据,数据块越大,系统恢复就会越长。

3.2.1 HDFS文件读流程

1、向NameNode通信查询元数据(block所在的DataNode节点),找到文件块所在的DataNode服务器。

2、挑选一台DataNode(就近原则,然后随机)服务器,请求建立socket流。

3、DataNode开始发送数据(从磁盘里面读取数据放入流,以packet为单位来做校验)。

4、客户端已packet为单位接收,现在本地缓存,然后写入目标文件,后面的block块就相当于是append到前面的block块最后合成最终需要的文件。

3.2.2 HDFS文件写流程

1、向NameNode通信请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在。

2、NameNode返回确认可以上传。

3、client会先对文件进行切分,比如一个block块128m,文件有300m就会被切分成3个块,一个128m、一个128m、一个44m。请求第一个block该传输到哪些DataNode服务器上。

4、NameNode返回DataNode的服务器。

5、client请求一台DataNode上传数据,第一个DataNode收到请求会继续调用第二个DataNode,然后第二个调用第三个DataNode,将整个通道建立完成,逐级返回客户端。

6、client开始往A上传第一个block,当然在写入的时候DataNode会进行数据校验,第一台DataNode收到后就会传给第二台,第二台传给第三台。

7、当一个block传输完成之后,client再次请求NameNode上传第二个block的服务器。

四、MapReduce介绍

1、概念

MapReduce是一种编程模型,是一种编程方法,是抽象的理论,采用了分而治之的思想。MapReduce框架的核心步骤主要分两部分,分别是Map和Reduce。每个文件分片由单独的机器去处理,这就是Map的方法,将各个机器计算的结果汇总并得到最终的结果,这就是Reduce的方法。

2、工作流程

向MapReduce框架提交一个计算作业时,它会首先把计算作业拆分成若干个Map任务,然后分配到不同的节点上去执行,每一个Map任务处理输入数据中的一部分,当Map任务完成后,它会生成一些中间文件,这些中间文件将会作为Reduce任务的输入数据。Reduce任务的主要目标就是把前面若干个Map的输出汇总到一起并输出。

3、运行MapReduce示例

运行Hadoop自带的MapReduce经典示例Word-count,统计文本中出现的单词及其次数。首先将任务提交到Hadoop框架上。

查看MapReduce运行结束后的输出文件目录及结果内容。

可以看到统计单词出现的次数结果

五、Hadoop安装

墙裂推荐:史上最详细的Hadoop环境搭建(https://blog.csdn.net/hliq5399/article/details/78193113)

1、Hadoop部署模式

本地模式

伪分布式模式

完全分布式模式

以上部署模式区分的依据是NameNode、Data-Node、ResourceManager、NodeManager等模块运行在几个JVM进程、几个机器上。

2、安装步骤(以伪分布式模式为例)

学习Hadoop一般是在伪分布式模式下进行。这种模式是在一台机器上各个进程上运行Hadoop的各个模块,伪分布式的意思是虽然各个模块是在各个进程上分开运行的,但是只是运行在一个操作系统上的,并不是真正的分布式。

5.2.1 JDK包下载、解压安装及JAVA环境变量配置

exportJAVA_HOME=/home/admin/apps/jdk1.8.0_151

exportCLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar

exportPATH=$JAVA_HOME/bin:$PATH

5.2.2 Hadoop包下载、解压安装及Hadoop环境变量配置

exportHADOOP_HOME="/zmq/modules/hadoop/hadoop-3.1.0"

exportPATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH

5.2.3 配置Hadoop-env.sh、mapred-env.sh、yarn-env.sh文件的JAVA_HOME参数

exportJAVA_HOME="/home/admin/apps/jdk1.8.0_151"

5.2.4 配置core-site.xml,配置的是HDFS的地址和Hadoop临时目录

5.2.5 配置hdfs-site.xml,设置HDFS存储时的备份数量,这里是伪分布式部署,就填写1

5.2.6 格式化HDFS,启动NameNode、Data-Node、SecondaryNameNode,查看进程

5.2.7 搭建完成,操作HDFS(常用的新建目录、上传下载文件等),以及运行MapReduceJob

六、Hadoop更多

以上介绍的仅是对Hadoop的初步学习和使用,Ha-doop的HA完全分布式部署、Hadoop的资源调度YARN、Hadoop的高可用和容错机制、Hadoop生态圈的其他组件等等还没有去研究,感叹Hadoop水很深,哈哈。

作者简介:梦琴,两年+测试经验,当前主要负责内部平台产品的测试及部分外部交付项目测试。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
6月前
|
分布式计算 Hadoop Java
Hadoop快速入门——第一章、认识Hadoop与创建伪分布式模式(Hadoop3.1.3版本配置)
Hadoop快速入门——第一章、认识Hadoop与创建伪分布式模式(Hadoop3.1.3版本配置)
138 0
|
分布式计算 Hadoop 网络安全
Hadoop快速入门——第二章、分布式集群(第二节、Hadoop分布式模式搭建)(2)
Hadoop快速入门——第二章、分布式集群(第二节、Hadoop分布式模式搭建)
107 1
Hadoop快速入门——第二章、分布式集群(第二节、Hadoop分布式模式搭建)(2)
|
分布式计算 Hadoop Java
Hadoop快速入门——第二章、分布式集群(第二节、Hadoop分布式模式搭建)(1)
Hadoop快速入门——第二章、分布式集群(第二节、Hadoop分布式模式搭建)
103 1
Hadoop快速入门——第二章、分布式集群(第二节、Hadoop分布式模式搭建)(1)
|
分布式计算 Hadoop 网络安全
Hadoop快速入门——第四章、zookeeper(集群)(2)
Hadoop快速入门——第四章、zookeeper(集群)
96 0
Hadoop快速入门——第四章、zookeeper(集群)(2)
|
分布式计算 Hadoop 网络安全
Hadoop快速入门——第四章、zookeeper(集群)(1)
Hadoop快速入门——第四章、zookeeper(集群)
88 0
Hadoop快速入门——第四章、zookeeper(集群)(1)
|
分布式计算 Hadoop
Hadoop快速入门——第四章、zookeeper安装
Hadoop快速入门——第四章、zookeeper安装
107 0
Hadoop快速入门——第四章、zookeeper安装
|
存储 分布式计算 Hadoop
Hadoop快速入门——第三章、MapReduce案例(字符统计)(2)
Hadoop快速入门——第三章、MapReduce案例(字符统计)
132 0
Hadoop快速入门——第三章、MapReduce案例(字符统计)(2)
|
分布式计算 Java Hadoop
Hadoop快速入门——第三章、MapReduce案例(字符统计)(1)
Hadoop快速入门——第三章、MapReduce案例(字符统计)
150 0
Hadoop快速入门——第三章、MapReduce案例(字符统计)(1)
|
存储 分布式计算 Hadoop
Hadoop快速入门——第二章、分布式集群(第四节、搭建开发环境)(2)
Hadoop快速入门——第二章、分布式集群(第四节、搭建开发环境)
125 0
Hadoop快速入门——第二章、分布式集群(第四节、搭建开发环境)(2)
|
分布式计算 Hadoop
Hadoop快速入门——第二章、分布式集群(第四节、搭建开发环境)(1)
Hadoop快速入门——第二章、分布式集群(第四节、搭建开发环境)
94 0
Hadoop快速入门——第二章、分布式集群(第四节、搭建开发环境)(1)