混合循环发电场输出电力预测

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 前言机器学习很多时候在工业场景下也会有非常好的应用。本次实验,我们就会以一个综合循环发电厂的发电数据来展示机器学习是如何应用到工业生产的实际场景中的。 本实验数据采集自 UCI 机器学习数据集中的 混合发电厂数据。

前言

机器学习很多时候在工业场景下也会有非常好的应用。本次实验,我们就会以一个综合循环发电厂的发电数据来展示机器学习是如何应用到工业生产的实际场景中的。

本实验数据采集自 UCI 机器学习数据集中的 混合发电厂数据。对于发电厂来说,风力发电的输出电力很大情况下决定了单位发电机能够生产的电能。因此,通过收集系统各个相关指标来预测最终的输出电力对于发电厂来说是非常有帮助的。有效的预测发电机的输出电力可以更好的评估安排电力生产计划,避免资源的浪费。

载入数据并进行数据探索

载入好数据集之后,里面是一个综合循环发电场的数据,一共有9568个样本数据。每个数据有5列,分别为:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力)。下面是数据预览的截图:

_

然后为了找出对 PE 输出电力影响最大的因素,我们可以从左侧 组件-统计分析 拖入相关系数矩阵这个组件,来观察各个特征对于输出电力。

_

右键单击完成的组件,选择查看分析报告,就可以得到我们的相关性分析了。从这张相关性图中,我们不难看到和 输出电力最相关的因素就是 温度,其次是 压力,然后是湿度,再然后是压强。

对数据进行建模

观察完数据相关性之后,我们可以通过 组件-数据预处理 中的拆分组件 对数据做一次拆分,将数据分为训练集和测试集。然后再使用 组件-机器学习-回归 中的线性回归 来对我们的数据进行回归建模。这里我们需要选择我们的特征列(X)和我们的标签列(Y)

_

对回归模型进行预测和评估

建模完毕之后,我们可以通过 组件-机器学习 中的预测来预测该模型在测试数据集上的效果。只需要进行如下的配置即可 特征列我们选择 at,v,ap,rh 原样输出列我们全选即可。

_

我们在这一步完成之后可以右键模型,点击查看模型 即可看到不同的特征对于我们的结果量的权重

最后,再从左侧的 组件-机器学习-评估 中选择回归模型评估即可获得我们的模型效果。右键 回归模型评估-查看分析报告 即可发现我们的 RMSE 到达了 4.57。下面是整个实验完成后的截图

_

这样我们就通过线性回归模型建立了一个混合发电厂的发电电力预测模型。通过模型部署之后,我们就可以实时的为发电厂提供发电电力的预估,以便更好的安排电力的生产计划,避免资源浪费。

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
SQL 运维 网络协议
【运维】阿里云宝塔面板部署JavaWeb项目
【运维】阿里云宝塔面板部署JavaWeb项目
1293 0
【运维】阿里云宝塔面板部署JavaWeb项目
|
设计模式 Java 编译器
面向对象编程中的继承与多态:深入理解父类引用指向子类实例
面向对象编程中的继承与多态:深入理解父类引用指向子类实例
|
人工智能 自然语言处理 API
向量检索服务实践测评
向量检索服务是一种基于阿里云自研的向量引擎 Proxima 内核,提供具备水平拓展、全托管、云原生的高效向量检索服务。向量检索服务将强大的向量管理、查询等能力,通过简洁易用的 SDK/API 接口透出,方便在大模型知识库搭建、多模态 AI 搜索等多种应用场景上集成。
138960 5
|
开发工具 git
如何在 Git 上删除文件?
如何在 Git 上删除文件?
969 0
|
Docker 容器
尝试添加 --skip-broken 来跳过无法安装的软件包 或 --nobest 来不只使用最佳选择的软件包
尝试添加 --skip-broken 来跳过无法安装的软件包 或 --nobest 来不只使用最佳选择的软件包
1827 0
尝试添加 --skip-broken 来跳过无法安装的软件包 或 --nobest 来不只使用最佳选择的软件包
|
9月前
|
人工智能 安全 算法
深度剖析 打造大模型时代的可信AI:技术创新与安全治理并重
2024年12月11日,由中国计算机学会计算机视觉专委会主办的“打造大模型时代的可信AI”论坛在上海举行。论坛汇聚了来自多家知名学术机构和企业的顶尖专家,围绕AI的技术风险与治理挑战,探讨如何在大模型时代确保AI的安全性和可信度,推动技术创新与安全治理并行。论坛重点关注计算机视觉领域的最新进展,提出了多项技术手段和治理框架,为AI的健康发展提供了有力支持。
237 8
深度剖析 打造大模型时代的可信AI:技术创新与安全治理并重
|
8月前
|
人工智能 Serverless API
AI时代下的数据信息提取 | 多模态数据信息提取
多模态数据信息提取方案利用先进的大模型技术,支持文本、图像、音频和视频等多种格式文件的信息抽取。该方案通过函数计算FC构建Web服务,接收用户请求并调用视觉和文本模型进行处理,最终返回结果。部署过程简单易上手,适合新手操作,且提供详细的文档和截图指导。用户可通过在线WebUI或API接口实现信息提取,满足不同场景需求。此外,该方案支持批处理模式下的离线作业,大幅提高大规模数据处理效率,降低业务落地成本达50%。
|
6月前
|
人工智能 数据库管理 OLAP
Qwen3 + AnalyticDB+Dify on DMS 私有部署指导⽂档
Qwen3 + AnalyticDB+Dify on DMS 私有部署指导⽂档
1775 2
|
10月前
|
SQL 存储 关系型数据库
【赵渝强老师】Hive的内部表与外部表
Hive是基于HDFS的数据仓库,支持SQL查询。其数据模型包括内部表、外部表、分区表、临时表和桶表。本文介绍了如何创建和使用内部表和外部表,提供了详细的步骤和示例代码,并附有视频讲解。
538 1
|
SQL 关系型数据库 MySQL
基于Hive的天气情况大数据分析系统(通过hive进行大数据分析将分析的数据通过sqoop导入到mysql,通过Django基于mysql的数据做可视化)
基于Hive的天气情况大数据分析系统(通过hive进行大数据分析将分析的数据通过sqoop导入到mysql,通过Django基于mysql的数据做可视化)
582 0