《Python与机器学习实战》| 每日读本书

简介: 简单的Python,可以完成复杂的机器学习算法,跟我来吧!每日搜罗最具权威专业书籍,更多图书请关注“每日读本书”。

编辑推荐

算法与代码兼顾,理论与实践结合

  • 很丰富:7种算法,50段实现,55个实例,总代码量5295行,全面而不冗余;
  • 很扎实:对经典有效的机器学习算法的核心内容进行了相当详细的推导;
  • 很应用:将理论实打实地用Python代码写出来,可以解决一定的任务;
  • 很前沿:叙述了TensorFlow框架、Inception-v3 from Google、迁移学习等前沿技术。

test
何宇健 著 / 2017年7月出版

内容提要

Python与机器学习这一话题是如此的宽广,仅靠一本书自然不可能涵盖到方方面面,甚至即使出一个系列的书也难能做到这点。单就机器学习而言,其领域就包括但不限于如下:有监督学习(Supervised Learning),无监督学习(Unsupervised Learning)和半监督学习(Semi-Supervised Learning)。而其具体的问题又大致可以分为两类:分类问题(Classification)和回归问题(Regression)。

Python本身带有许多机器学习的第三方库,但《Python与机器学习实战:决策树、集成学习、支持向量机与神经网络算法详解及编程实现》在绝大多数情况下只会用到Numpy这个基础的科学计算库来进行算法代码的实现。这样做的目的是希望读者能够从实现的过程中更好地理解机器学习算法的细节,以及了解Numpy的各种应用。不过作为补充,《Python与机器学习实战:决策树、集成学习、支持向量机与神经网络算法详解及编程实现》会在适当的时候应用scikit-learn这个成熟的第三方库中的模型。

《Python与机器学习实战:决策树、集成学习、支持向量机与神经网络算法详解及编程实现》适用于想了解传统机器学习算法的学生和从业者,想知道如何高效实现机器学习算法的程序员,以及想了解机器学习算法能如何进行应用的职员、经理等。

精彩导读

前言

自从AlphaGo在2016年3月战胜人类围棋顶尖高手李世石后,“人工智能”“深度学习”这一类词汇就进入了大众的视野;而作为更加宽泛的一个概念——“机器学习”则多少顺势成为了从学术界到工业界都相当火热的话题。不少人可能都想尝试和体验一下“机器学习”这个可以说是相当神奇的东西,不过可能又苦于不知如何下手。编著本书的目的,就是想介绍一种入门机器学习的方法。虽然市面上已经有许多机器学习的书籍,但它们大多要么过于偏重理论,要么过于偏重应用,要么过于“厚重”;本书致力于将理论与实践相结合,在讲述理论的同时,利用Python这一门简明有力的编程语言进行一系列的实践与应用。

当然,囿于作者水平,本书实现的一些模型从速度上来说会比成熟的第三方库中实现的模型要慢不少。一方面是因为比较好的第三方库背后往往会用底层语言来实现核心算法,另一方面则是本书通常会把数据预处理的过程涵盖在模型中。以决策树模型为例,scikit-learn中的决策树模型会比本书的实现要快很多,但本书实现的模型能够用scikit-learn中决策树模型训练不了的训练集来训练。

同时,限于篇幅,本书无法将所有代码都悉数放出(事实上这样做的意义也不是很大),所以我们会略去一些相对枯燥且和相应算法的核心思想关系不大的实现。对于这些实现,我们会进行相应的算法说明,感兴趣的读者可以尝试自己一步一步地去实现,也可以直接在GitHub上面查看笔者自己实现的版本(GitHub地址会在相应的地方贴出)。本书所涉及的所有代码都可以参见https://github.com/carefree0910/MachineLearning ,笔者也建议在阅读本书之前先把这个链接里面的内容都下载下来作为参照。毕竟即使在本书收官之后,笔者仍然会不时地在上述链接中优化和更新相应的算法,而这些更新是无法反映在本书中的。

虽说确实可以完全罔顾理论来用机器学习解决许多问题,但是如果想要理解背后的道理并借此提高解决问题的效率,扎实的理论根基是必不可少的。本书会尽量避免罗列枯燥的数学公式,但是基本的公式常常不可或缺。虽然笔者想要尽量做到通俗易懂,但仍然还是需要读者拥有一定的数学知识。不过为了阅读体验良好,本书通常会将比较烦琐的数学理论及相关推导放在每一章的倒数第二节(最后一节是总结)作为某种意义上的“附加内容”。这样做有若干好处:

对于已经熟知相关理论的读者,可以不再重复地看同样的东西;

对于只想了解机器学习各种思想、算法和实现的读者,可以避免接受不必要的知识;

对于想了解机器学习背后道理和逻辑的读者,可以有一个集中的地方进行学习。

本书的特点

理论与实践结合,在较为详细、全面地讲解理论之后,会配上相应的代码实现以加深读者对相应算法的理解。

每一章都会有丰富的实例,让读者能够将本书所阐述的思想和模型应用到实际任务中。

在涵盖了诸多经典的机器学习算法的同时,也涵盖了许多最新的研究成果(比如最后一章所讲述的卷积神经网络(CNN)可以说就是许多“深度学习”的基础)。

所涉及的模型实现大多仅仅基于线性代数运算库(Numpy)而没有依赖更高级的第三方库,读者无须了解Python那浩如烟海的第三方库中的任何一个便能读懂本书的代码。


积跬步以至千里。每天读本书,为您搜罗最具权威专业书籍,更多图书推荐请关注每日读书

好知识需要分享,如您有喜欢的书籍想与广大开发者分享,请在文章下方评论留言,我们将为大家推荐您的爱书!

相关文章
|
14天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
12天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
44 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
14天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
31 2
|
17天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
51 4
|
15天前
|
机器学习/深度学习 数据可视化 数据处理
Python数据科学:从基础到实战
Python数据科学:从基础到实战
25 1
|
16天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
33 1
|
16天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
32 1
|
16天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
40 1
|
22天前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
49 5
|
19天前
|
前端开发 API 开发者
Python Web开发者必看!AJAX、Fetch API实战技巧,让前后端交互如丝般顺滑!
在Web开发中,前后端的高效交互是提升用户体验的关键。本文通过一个基于Flask框架的博客系统实战案例,详细介绍了如何使用AJAX和Fetch API实现不刷新页面查看评论的功能。从后端路由设置到前端请求处理,全面展示了这两种技术的应用技巧,帮助Python Web开发者提升项目质量和开发效率。
33 1
下一篇
无影云桌面