云上的Growth hacking之路,打造产品的增长引擎

简介: 增长关乎产品的存亡增长!增长!增长!业务增长是每一个创业者每天面临的最大问题。无论你的产品是APP,还是web,或者是小程序,只能不断的维持用户的增长,才能向资本市场讲出一个好故事,融资活下去。活到最后的产品,才有机会盈利。

增长关乎产品的存亡

增长!增长!增长!业务增长是每一个创业者每天面临的最大问题。无论你的产品是APP,还是web,或者是小程序,只能不断的维持用户的增长,才能向资本市场讲出一个好故事,融资活下去。活到最后的产品,才有机会盈利。

为了获取用户的增长,可以投放广告,也可以内容营销、社交传播、销售地推,或者持续的专注于产品优化。无论哪一种方式,我们都面临这几个问题:

  1. 运营活动,覆盖了多少用户?
  2. 多少用户,开始使用产品?
  3. 多少用户付费?
  4. 多少用户持续的活跃?
  5. 下一步,我们应该把精力放在哪些方面?是持续运营?还是开发新功能?

image.png

如果不能回答这些问题,无疑我们的运营活动或者开发就是盲人摸象,完全靠运气。为了解答这些问题,我们不妨关注一下growth hacking这种数据驱动的手段。

Growth Hacker的核心思想

传统的市场营销策略,例如投放电视广告,覆盖了多少人,有多少人看过广告后进行了购买,多少人进行了复购,没有准确的数据进行衡量,只能依赖于资深专家根据经验判断。在互联网行业,每一个产品都是新的,前所未有的。每一个产品能不能存活,每一次运营的效果如何,没有多少经验可供借鉴,结果是不确定的。

image.png

GrowthHacking是兴起于硅谷的创业公司的marketing手段,旨在使用少量预算获得巨量增长。由于其极高的性价比和有效性,非常适合于创业公司,因而得到了广泛传播。

Growth Hacker的核心思想是通过数据指标,驱动运营决策,以及优化产品。Growthacker通过关注用户获取、用户转化、用户留存、用户推荐、盈利等核心的一系列指标,以及通过各种维度拆解,分析出下一步的增长决策。通过Growth Hacking,打造一个产品增长策略的闭环。

image.png

那么我们如何才能搭建出GrowthHacking架构,为自己的产品赋能呢?

GrowthHacking之架构

Growth Hacking 包含了数据的采集、存储、分析、报表、A/B test等系统,首先我们来看,传统的解决方案,搭建出GrowthHacking有哪些痛点:

搭建运营体系的痛点

搭建运营体系的过程中,常常面临以下问题:

  1. 缺少数据,数据散落在各个地方,有的是app数据,有的是web数据,有的是小程序数据,没有一个统一的架构来把数据采集到一个地方。
  2. 缺少一个分析平台。传统的策略,需要运维团队帮助搭建hadoop集群,需要专门团队持久运维。
  3. 离线跑报表,一晚上才能拿到一次结果,周期太长。手工跑一次,几个小时过去了,有什么新的想法,不能及时验证。严重影响运营效率。

借助云服务搭建的GrowthHacking技术架构

为了解决以上问题, 日志服务提供了日志采集、存储、交互分析、可视化的一整套基础设施,可以帮助用户快速搭建出来灵活易用的Growthing Hacking的技术架构,每天的工作只需要专注于运营分析即可。

image.png

Growth Hacking首先从数据采集开始,定义清楚要采集的日志内容、格式。把各个终端、服务器的日志集中采集到云端的日志服务。后续通过日志服务提供的SQL实时分析功能,交互式的分析。定义一些常规报表,每日打开报表自动计算最新结果,也可以定义报告,自动发送最新报表。全部功能参考用户手册

此外,除了日志数据的分析,还可以为用户定义一些标签,存储在rds中,通过rds和日志的联合分析,挖掘不同标签对应的指标。

日志服务有如下特点:

  • 免运维:一次完成数据的埋点、数据接入,之后只需专注于运营分析即可,无需专门的运维团队。
  • 实时性:用SQL实时计算,秒级响应。快人一步得到分析结果。
  • 灵活性:任意调整SQL,实时获取结果,非常适合交互式分析。
  • 弹性:遇到运营活动,流量突然暴涨,动动手指快速扩容。
  • 性价比:市场上常见的分析类产品,多采用打包价格,限制使用量。日志服务按量付费,价格更低,功能更强大。

借助于日志服务提供的这套数据采集、存储、分析的基础设施。运营者可以从繁重的数据准备工作重解脱出来,专注于使用SQL去分析数据,配置报表,验证运营想法。

image.png

开始搭建GrowthHacking系统

具体而言,Growth Hacking的架构可以拆分如下:

  1. 数据收集

  2. 存储

    • 选择日志服务的region。
    • 定义每一种日志存储的Project & LogStore。
  3. 分析

    • 开启分析之路,定义常规报表,或者交互式分析。
    • 通过分析结果,调整运营策略,有针对性的优化产品。

基于日志服务,可以完成Growth Hacking的分析策略:

  1. 定义北极星指标。
  2. 拉新分析。
  3. 留存分析。
  4. 事件分析。
  5. 漏斗分析。
  6. 用户分群。
  7. A/B test。

在日志服务中,可以通过定义一系列仪表盘,来沉淀数据分析的结果。接下来的几篇文章中,将依次介绍如何在日志服务实现上述几种策略。

image.png

总结

本文主要介绍Growth Hacking的整体架构,之后将用一系列文章介绍step by step如何介入数据,如何分析数据。

相关实践学习
通过日志服务实现云资源OSS的安全审计
本实验介绍如何通过日志服务实现云资源OSS的安全审计。
目录
相关文章
|
存储 Prometheus 运维
[10.14 workshop] 自定义 Prometheus 监控指标并通过 Grafana 展示
阿里云Prometheus监控全面对接开源Prometheus生态,支持类型丰富的组件监控,提供多种开箱即用的预置监控大盘,且提供全面托管的Prometheus服务。借助阿里云Prometheus监控,您无需自行搭建Prometheus监控系统,因而无需关心底层数据存储、数据展示、系统运维等问题。
[10.14 workshop] 自定义 Prometheus 监控指标并通过 Grafana 展示
|
4月前
|
机器学习/深度学习 存储 人工智能
AI 视频检测:重构食品质检体系,破解大规模生产品质难题
AI视频检测技术助力食品行业质检升级,通过实时感知、精准识别与数据驱动,实现从加工到成品的全流程智能管控,解决传统质检效率低、标准不统一等问题。
686 0
|
人工智能 编解码 内存技术
手把手教你生成一幅好看的AI图片
想要生成一幅好看的AI图片,但是却不知道如何下手?只会1girl的你现在是不是很烦恼?别急,看这篇文章就够了。
手把手教你生成一幅好看的AI图片
|
7月前
|
人工智能 边缘计算 自然语言处理
大模型应用实践:2025年智能语音机器人厂商推荐和方案详解
随着数字化转型加速,AI客服机器人市场规模预计2025年突破500亿美元,年复合增长率超25%。其发展由语音交互升级、垂直场景解决方案成熟及多模态融合与边缘计算普及三大趋势驱动。文章分析了智能语音机器人的选型核心维度,包括技术性能、场景适配、数据治理与成本效益,并对比了国内外代表厂商如合力亿捷、Zendesk等的方案特点,为企业提供选型策略与落地建议,助力实现服务模式的根本性变革。
761 0
|
关系型数据库 MySQL 数据库
CDC YAML 在阿里云的最佳实践
本文撰写自阿里云开源大数据平台数据通道团队,主要介绍了 Flink CDC YAML 在实时计算Flink版的最佳实践。
872 4
CDC YAML 在阿里云的最佳实践
|
监控 Oracle 关系型数据库
性能监控之Telegraf+InfluxDB+Grafana+Python实现Oracle实时监控
【6月更文挑战14天】性能监控之Telegraf+InfluxDB+Grafana+Python实现Oracle实时监控
453 2
|
存储 监控 安全
Linux内核调优的艺术:从基础到高级###
本文深入探讨了Linux操作系统的心脏——内核的调优方法。文章首先概述了Linux内核的基本结构与工作原理,随后详细阐述了内核调优的重要性及基本原则。通过具体的参数调整示例(如sysctl、/proc/sys目录中的设置),文章展示了如何根据实际应用场景优化系统性能,包括提升CPU利用率、内存管理效率以及I/O性能等关键方面。最后,介绍了一些高级工具和技术,如perf、eBPF和SystemTap,用于更深层次的性能分析和问题定位。本文旨在为系统管理员和高级用户提供实用的内核调优策略,以最大化Linux系统的效率和稳定性。 ###
|
存储 人工智能 Serverless
方案测评 | 10分钟上手主动式智能导购AI助手构建
本文介绍了一种基于Multi-Agent架构的智能导购系统方案,利用百炼的Assistant API快速构建,旨在10分钟内完成搭建并实现精准的商品推荐。通过详细的操作指南,展示了从获取API Key、创建函数计算应用、部署示例网站、验证导购效果到集成商品检索应用等全过程,最后提出了关于文档完善、功能优化等方面的体验反馈。
|
关系型数据库 MySQL 分布式数据库
OceanBase的竞争对手是谁?
【8月更文挑战第8天】OceanBase的竞争对手是谁?
543 3
|
API Swift iOS开发
【Swift开发专栏】Swift中的游戏开发入门
【4月更文挑战第30天】本文介绍了使用Swift进行移动游戏开发的基础知识,包括Apple的开发平台(iOS, macOS)、工具(Xcode)、2D/3D游戏框架(SpriteKit, SceneKit)以及Metal图形API。Swift游戏开发涉及游戏循环、UI设计、逻辑、图形音效和网络编程。通过实例教程展示如何在Xcode中创建2D游戏,从创建项目到实现用户交互、音效和测试。掌握这些基础知识,开发者可快速入门并逐步进阶到更复杂的游戏中。
695 1