Python爬虫入门教程 57-100 python爬虫高级技术之验证码篇3-滑动验证码识别技术

简介: 滑动验证码介绍本篇博客涉及到的验证码为滑动验证码,不同于极验证,本验证码难度略低,需要的将滑块拖动到矩形区域右侧即可完成。这类验证码不常见了,官方介绍地址为:https://promotion.

滑动验证码介绍

本篇博客涉及到的验证码为滑动验证码,不同于极验证,本验证码难度略低,需要的将滑块拖动到矩形区域右侧即可完成。

20190318185955721

这类验证码不常见了,官方介绍地址为:https://promotion.aliyun.com/ntms/act/captchaIntroAndDemo.html
使用起来肯定是非常安全的了,不是很好通过机器检测

如何判断验证码类型

这个验证码的标识一般比较明显,在页面源码中一般存在一个 nc.js 基本可以判定是阿里云的验证码了

<script type="text/javascript" src="//g.alicdn.com/sd/ncpc/nc.js?t=1552906749855"></script>

识别套路

截止到2019年3月18日,本验证码加入了大量的selenium关键字验证,所以单纯的模拟拖拽被反爬的概率满高的,你也知道一般情况爬虫具备时效性 不确保这种手段过一段时间还可以使用!

导入selenium必备的一些模块与方法

from selenium import webdriver
from selenium.webdriver.support.wait import WebDriverWait
# from selenium.webdriver.support import expected_conditions as EC
# from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.options import Options
from selenium.webdriver import ActionChains

import time
import random

在启动selenium之前必须要设置一个本机的代理,进行基本的反[反爬] 处理,很多爬虫在获取用户指纹的时候,都比较喜欢selenium,因为使用selenium模拟浏览器进行数据抓取,能够绕过客户JS加密,绕过爬虫检测,绕过签名机制

但是selenium越来越多的被各种网站进行了相关屏蔽,因为selenium在运行的时候会暴露出一些预定义的Javascript变量(特征字符串),例如"window.navigator.webdriver",在非selenium环境下其值为undefined,而在selenium环境下,其值为true

image

下图所示为selenium驱动下Chrome控制台打印出的值
image

细致的绕过去的方法,可能需要单独的一篇博客进行赘述了,这里我只对上面的参数进行屏蔽,使用到的是之前博客中涉及的mitmdump进行代理

https://docs.mitmproxy.org/stable/concepts-certificates/

mitmdump进行代理

技术参考来源:https://zhuanlan.zhihu.com/p/43581988

关于这个模块的基本使用,参考我前面的博客即可,这里核心使用了如下代码

indject_js_proxy.py

from mitmproxy import ctx
injected_javascript = '''
// overwrite the `languages` property to use a custom getter
Object.defineProperty(navigator, "languages", {
  get: function() {
    return ["zh-CN","zh","zh-TW","en-US","en"];
  }
});
// Overwrite the `plugins` property to use a custom getter.
Object.defineProperty(navigator, 'plugins', {
  get: () => [1, 2, 3, 4, 5],
});
// Pass the Webdriver test
Object.defineProperty(navigator, 'webdriver', {
  get: () => false,
});
// Pass the Chrome Test.
// We can mock this in as much depth as we need for the test.
window.navigator.chrome = {
  runtime: {},
  // etc.
};
// Pass the Permissions Test.
const originalQuery = window.navigator.permissions.query;
window.navigator.permissions.query = (parameters) => (
  parameters.name === 'notifications' ?
    Promise.resolve({ state: Notification.permission }) :
    originalQuery(parameters)
);
'''
 
def response(flow):
    # Only process 200 responses of HTML content.
    if not flow.response.status_code == 200:
        return
 
    # Inject a script tag containing the JavaScript.
    html = flow.response.text
    html = html.replace('<head>', '<head><script>%s</script>' % injected_javascript)
    flow.response.text = str(html)
    ctx.log.info('>>>> js代码插入成功 <<<<')
 
    # 只要url链接以target开头,则将网页内容替换为目前网址
    # target = 'https://target-url.com'
    # if flow.url.startswith(target):
    #     flow.response.text = flow.url

上述脚本放置任意目录,之后进行mitmdump的启动即可

C:\user>mitmdump -s indject_js_proxy.py   
Loading script indject_js_proxy.py
Proxy server listening at http://*:8080

启动之后,通过webdriver访问

测试网站:https://intoli.com/blog/not-possible-to-block-chrome-headless/chrome-headless-test.html

如果webDriver是绿色,也说明代理起作用了

image

selenium爬取

接下来就是通过selenium进行一些模拟行为的操作了,这部分代码比较简单,编写的时候参考一下注释即可。

# 实例化一个启动参数对象
chrome_options = Options()
# 添加启动参数
chrome_options.add_argument('--proxy-server=127.0.0.1:8080')
# 将参数对象传入Chrome,则启动了一个设置了窗口大小的Chrome
driver = webdriver.Chrome(chrome_options=chrome_options)

关键函数

def move_to_gap(tracks):

    driver.get("https://passport.zcool.com.cn/regPhone.do?appId=1006&cback=https://my.zcool.com.cn/focus/activity")

    # 找到滑块span
    need_move_span = driver.find_element_by_xpath('//*[@id="nc_1_n1t"]/span')
    # 模拟按住鼠标左键
    ActionChains(driver).click_and_hold(need_move_span).perform()
    for x in tracks:  # 模拟人的拖动轨迹
        print(x)
        ActionChains(driver).move_by_offset(xoffset=x,yoffset=random.randint(1,3)).perform()
    time.sleep(1)
    ActionChains(driver).release().perform()  # 释放左键

注意看到上述代码中有何核心的点 --- 拖拽距离的 列表tracks

if __name__ == '__main__':
    move_to_gap(get_track(295))

这个地方可以借鉴网上的方案即可

def get_track(distance):
    '''
    拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速
    匀变速运动基本公式:
    ①v=v0+at
    ②s=v0t+(1/2)at²
    ③v²-v0²=2as

    :param distance: 需要移动的距离
    :return: 存放每0.2秒移动的距离
    '''
    # 初速度
    v=0
    # 单位时间为0.2s来统计轨迹,轨迹即0.2内的位移
    t=0.1
    # 位移/轨迹列表,列表内的一个元素代表0.2s的位移
    tracks=[]
    # 当前的位移
    current=0
    # 到达mid值开始减速
    mid=distance * 4/5

    distance += 10  # 先滑过一点,最后再反着滑动回来

    while current < distance:
        if current < mid:
            # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细
            a = 2  # 加速运动
        else:
            a = -3 # 减速运动

        # 初速度
        v0 = v
        # 0.2秒时间内的位移
        s = v0*t+0.5*a*(t**2)
        # 当前的位置
        current += s
        # 添加到轨迹列表
        tracks.append(round(s))

        # 速度已经达到v,该速度作为下次的初速度
        v= v0+a*t

    # 反着滑动到大概准确位置
    for i in range(3):
       tracks.append(-2)
    for i in range(4):
       tracks.append(-1)
    return tracks

代码注释已经添加好,可以自行查阅,临摹一下即可明白

最后开始进行尝试,实测中,发现可以自动拖动,但是,出现一个问题是最后被识别为机器,这个地方,我进行了多次的修改与调整,最终从代码层面发现实现确实有些复杂,所以改变策略,找一下chromedriver.exe是否有修改过的版本,中间去除了selenium的一些关键字,运气不错,被我找到了。

20190318192448902

目前只有windows10版本和linux16.04版本
gitee地址:https://gitee.com/bobozhangyx/java-crawler/tree/master/file/%E7%BC%96%E8%AF%91%E5%90%8E%E7%9A%84chromedriver

下载之后,替换你的 chromedriver.exe

image

再次运行,成功验证

20190318193016116

欢迎关注「非本科程序员」 回复 【0411】获取本篇博客源码

相关文章
|
2天前
|
数据采集 供应链 API
Python爬虫与1688图片搜索API接口:深度解析与显著收益
在电子商务领域,数据是驱动业务决策的核心。阿里巴巴旗下的1688平台作为全球领先的B2B市场,提供了丰富的API接口,特别是图片搜索API(`item_search_img`),允许开发者通过上传图片搜索相似商品。本文介绍如何结合Python爬虫技术高效利用该接口,提升搜索效率和用户体验,助力企业实现自动化商品搜索、库存管理优化、竞品监控与定价策略调整等,显著提高运营效率和市场竞争力。
20 3
|
13天前
|
数据采集 存储 缓存
如何使用缓存技术提升Python爬虫效率
如何使用缓存技术提升Python爬虫效率
|
14天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
22天前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
2月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
123 6
|
2月前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
103 4
|
5月前
|
数据采集 存储 中间件
Python进行网络爬虫:Scrapy框架的实践
【8月更文挑战第17天】网络爬虫是自动化程序,用于从互联网收集信息。Python凭借其丰富的库和框架成为构建爬虫的首选语言。Scrapy作为一款流行的开源框架,简化了爬虫开发过程。本文介绍如何使用Python和Scrapy构建简单爬虫:首先安装Scrapy,接着创建新项目并定义爬虫,指定起始URL和解析逻辑。运行爬虫可将数据保存为JSON文件或存储到数据库。此外,Scrapy支持高级功能如中间件定制、分布式爬取、动态页面渲染等。在实践中需遵循最佳规范,如尊重robots.txt协议、合理设置爬取速度等。通过本文,读者将掌握Scrapy基础并了解如何高效地进行网络数据采集。
269 6
|
5月前
|
数据采集 存储 JSON
Python爬虫开发:BeautifulSoup、Scrapy入门
在现代网络开发中,网络爬虫是一个非常重要的工具。它可以自动化地从网页中提取数据,并且可以用于各种用途,如数据收集、信息聚合和内容监控等。在Python中,有多个库可以用于爬虫开发,其中BeautifulSoup和Scrapy是两个非常流行的选择。本篇文章将详细介绍这两个库,并提供一个综合详细的例子,展示如何使用它们来进行网页数据爬取。
|
8月前
|
数据采集 存储 中间件
Python高效爬虫——scrapy介绍与使用
Scrapy是一个快速且高效的网页抓取框架,用于抓取网站并从中提取结构化数据。它可用于多种用途,从数据挖掘到监控和自动化测试。 相比于自己通过requests等模块开发爬虫,scrapy能极大的提高开发效率,包括且不限于以下原因: 1. 它是一个异步框架,并且能通过配置调节并发量,还可以针对域名或ip进行精准控制 2. 内置了xpath等提取器,方便提取结构化数据 3. 有爬虫中间件和下载中间件,可以轻松地添加、修改或删除请求和响应的处理逻辑,从而增强了框架的可扩展性 4. 通过管道方式存储数据,更加方便快捷的开发各种数据储存方式
|
数据采集 JSON 前端开发
Python爬虫进阶:使用Scrapy库进行数据提取和处理
在我们的初级教程中,我们介绍了如何使用Scrapy创建和运行一个简单的爬虫。在这篇文章中,我们将深入了解Scrapy的强大功能,学习如何使用Scrapy提取和处理数据。
下一篇
开通oss服务