Python爬虫入门教程 55-100 python爬虫高级技术之验证码篇

本文涉及的产品
文档理解,结构化解析 100页
通用文字识别,通用文字识别 200次/月
小语种识别,小语种识别 200次/月
简介: 验证码探究如果你是一个数据挖掘爱好者,那么验证码是你避免不过去的一个天坑,和各种验证码斗争,必然是你成长的一条道路,接下来的几篇文章,我会尽量的找到各种验证码,并且去尝试解决掉它,中间有些技术甚至我都没有见过,来吧,一起Coding吧数字+字母的验证码我随便在百度图片搜索了一个验证码,如下...

验证码探究

如果你是一个数据挖掘爱好者,那么验证码是你避免不过去的一个天坑,和各种验证码斗争,必然是你成长的一条道路,接下来的几篇文章,我会尽量的找到各种验证码,并且去尝试解决掉它,中间有些技术甚至我都没有见过,来吧,一起Coding吧

数字+字母的验证码

我随便在百度图片搜索了一个验证码,如下
image

今天要做的是验证码识别中最简单的一种办法,采用pytesseract解决,它属于Python当中比较简单的OCR识别库

库的安装

使用pytesseract之前,你需要通过pip 安装一下对应的模块 ,需要两个

pytesseract库还有图像处理的pillow库了

pip install pytesseract
pip install pillow

如果你安装了这两个库之后,编写一个识别代码,一般情况下会报下面这个错误

pytesseract.pytesseract.TesseractNotFoundError: tesseract is not installed or it's not in your path

这是由于你还缺少一部分内容

安装一个Tesseract-OCR软件。这个软件是由Google维护的开源的OCR软件。

下载地址 > https://github.com/tesseract-ocr/tesseract/wiki

中文包的下载地址 > https://github.com/tesseract-ocr/tessdata

选择你需要的版本进行下载即可

pillow库的基本操作

命令 释义
open() 打开一个图片
from PIL import Image
im = Image.open("1.png")
im.show()
save() 保存文件
convert() convert() 是图像实例对象的一个方法,接受一个 mode 参数,用以指定一种色彩模式,mode 的取值可以是如下几种:
· 1 (1-bit pixels, black and white, stored with one pixel per byte)
· L (8-bit pixels, black and white)
· P (8-bit pixels, mapped to any other mode using a colour palette)
· RGB (3x8-bit pixels, true colour)
· RGBA (4x8-bit pixels, true colour with transparency mask)
· CMYK (4x8-bit pixels, colour separation)
· YCbCr (3x8-bit pixels, colour video format)
· I (32-bit signed integer pixels)
· F (32-bit floating point pixels)

Filter

from PIL import Image, ImageFilter 
im = Image.open(‘1.png’) 
# 高斯模糊 
im.filter(ImageFilter.GaussianBlur) 
# 普通模糊 
im.filter(ImageFilter.BLUR) 
# 边缘增强 
im.filter(ImageFilter.EDGE_ENHANCE) 
# 找到边缘 
im.filter(ImageFilter.FIND_EDGES) 
# 浮雕 
im.filter(ImageFilter.EMBOSS) 
# 轮廓 
im.filter(ImageFilter.CONTOUR) 
# 锐化 
im.filter(ImageFilter.SHARPEN) 
# 平滑 
im.filter(ImageFilter.SMOOTH) 
# 细节 
im.filter(ImageFilter.DETAIL)

Format

format属性定义了图像的格式,如果图像不是从文件打开的,那么该属性值为None;
size属性是一个tuple,表示图像的宽和高(单位为像素);
mode属性为表示图像的模式,常用的模式为:L为灰度图,RGB为真彩色,CMYK为pre-press图像。如果文件不能打开,则抛出IOError异常。

这个地方可以参照一篇博客,写的不错 > https://www.cnblogs.com/mapu/p/8341108.html

验证码识别

注意安装完毕,如果还是报错,请找到模块 pytesseract.py 这个文件,对这个文件进行编辑

一般这个文件在 C:\Program Files\Python36\Lib\site-packages\pytesseract\pytesseract.py 位置

文件中 tesseract_cmd = 'tesseract' 改为自己的地址
例如: tesseract_cmd = 'C:\Program Files (x86)\Tesseract-OCR\tesseract.exe' 

如果报下面的BUG,请注意

Error opening data file \Program Files (x86)\Tesseract-OCR\tessdata/chi_sim.traineddata Please make sure the TESSDATA_PREFIX environment variable

解决办法也比较容易,按照它的提示,表示缺失了 TESSDATA_PREFIX 这个环境变量。你只需要在系统环境变量中添加一条即可

将 TESSDATA_PREFIX=C:Program Files (x86)Tesseract-OCR 添加环境变量

重启IDE或者重新CMD,然后继续运行代码,这个地方注意需要用管理员运行你的py脚本

步骤分为

  1. 打开图片 Image.open()
  2. pytesseract识别图片
import pytesseract
from PIL import Image

def main():
    image = Image.open("1.jpg")
 
    text = pytesseract.image_to_string(image,lang="chi_sim")
    print(text)

if __name__ == '__main__':
    main()

测试英文,数字什么的基本没有问题,中文简直惨不忍睹。空白比较大的可以识别出来。唉~不好用
当然刚才那个7364 十分轻松的就识别出来了。

带干扰的验证码识别

接下来识别如下的验证码,我们首先依旧先尝试一下。运行代码发现没有任何显示。接下来需要对这个图片进行处理
image

基本原理都是完全一样的

  1. 彩色转灰度
  2. 灰度转二值
  3. 二值图像识别

彩色转灰度

im = im.convert('L')  

灰度转二值,解决方案比较成套路,采用阈值分割法,threshold为分割点

def initTable(threshold=140):
    table = []
    for i in range(256):
        if i < threshold:
            table.append(0)
        else:
            table.append(1)
    return table

调用

binaryImage = im.point(initTable(), '1')
binaryImage.show()

调整之后
image

我们还需要对干扰线进行处理。在往下研究去,是图片深入处理的任务,对付小网站的简单验证码,这个办法足够了,本篇博文OVER,下一篇我们继续研究验证码。

参考链接

tesserocr GitHub:https://github.com/sirfz/tesserocr
tesserocr PyPI:https://pypi.python.org/pypi/tesserocr
pytesserocr GitHub:https://github.com/madmaze/pytesseract
pytesserocr PyPI:https://pypi.org/project/pytesseract/
tesseract下载地址:http://digi.bib.uni-mannheim.de/tesseract
tesseract GitHub:https://github.com/tesseract-ocr/tesseract
tesseract 语言包:https://github.com/tesseract-ocr/tessdata
tesseract文档:https://github.com/tesseract-ocr/tesseract/wiki/Documentation

相关文章
|
1天前
|
安全 数据挖掘 编译器
【01】优雅草央央逆向技术篇之逆向接口协议篇-如何用python逆向接口协议?python逆向接口协议的原理和步骤-优雅草央千澈
【01】优雅草央央逆向技术篇之逆向接口协议篇-如何用python逆向接口协议?python逆向接口协议的原理和步骤-优雅草央千澈
|
1天前
|
API Python
【02】优雅草央央逆向技术篇之逆向接口协议篇-以小红书为例-python逆向小红书将用户名转换获得为uid-优雅草央千澈
【02】优雅草央央逆向技术篇之逆向接口协议篇-以小红书为例-python逆向小红书将用户名转换获得为uid-优雅草央千澈
|
2天前
|
数据采集 供应链 API
Python爬虫与1688图片搜索API接口:深度解析与显著收益
在电子商务领域,数据是驱动业务决策的核心。阿里巴巴旗下的1688平台作为全球领先的B2B市场,提供了丰富的API接口,特别是图片搜索API(`item_search_img`),允许开发者通过上传图片搜索相似商品。本文介绍如何结合Python爬虫技术高效利用该接口,提升搜索效率和用户体验,助力企业实现自动化商品搜索、库存管理优化、竞品监控与定价策略调整等,显著提高运营效率和市场竞争力。
20 3
|
13天前
|
数据采集 存储 缓存
如何使用缓存技术提升Python爬虫效率
如何使用缓存技术提升Python爬虫效率
|
14天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
22天前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
21天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
57 2
|
2月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
123 6
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
270 4
|
6月前
|
数据采集 存储 JSON
从零到一构建网络爬虫帝国:HTTP协议+Python requests库深度解析
【7月更文挑战第31天】在网络数据的海洋中,使用Python的`requests`库构建网络爬虫就像探索未知的航船。HTTP协议指导爬虫与服务器交流,收集信息。HTTP请求包括请求行、头和体,响应则含状态行、头和体。`requests`简化了发送各种HTTP请求的过程。
105 4
下一篇
开通oss服务