分布式工作流任务调度系统EasyScheduler自定义任务插件开发

简介: 分布式工作流任务调度系统EasyScheduler自定义任务插件开发

任务插件开发

提醒:目前任务插件开发暂不支持热部署

基于SHELL的任务

基于YARN的计算(参见MapReduceTask)

  • 需要在 cn.escheduler.server.worker.task 下的 TaskManager 类中创建自定义任务(也需在TaskType注册对应的任务类型)
  • 需要继承cn.escheduler.server.worker.task 下的 AbstractYarnTask
  • 构造方法调度 AbstractYarnTask 构造方法
  • 继承 AbstractParameters 自定义任务参数实体
  • 重写 AbstractTaskinit 方法中解析自定义任务参数
  • 重写 buildCommand 封装command

基于非YARN的计算(参见ShellTask)

  • 需要在 cn.escheduler.server.worker.task 下的 TaskManager 中创建自定义任务
  • 需要继承cn.escheduler.server.worker.task 下的 AbstractTask
  • 构造方法中实例化 ShellCommandExecutor

    public ShellTask(TaskProps props, Logger logger) {
      super(props, logger);
    
      this.taskDir = props.getTaskDir();
    
      this.processTask = new ShellCommandExecutor(this::logHandle,
          props.getTaskDir(), props.getTaskAppId(),
          props.getTenantCode(), props.getEnvFile(), props.getTaskStartTime(),
          props.getTaskTimeout(), logger);
      this.processDao = DaoFactory.getDaoInstance(ProcessDao.class);
    }

传入自定义任务的 TaskProps和自定义Logger,TaskProps 封装了任务的信息,Logger分装了自定义日志信息

  • 继承 AbstractParameters 自定义任务参数实体
  • 重写 AbstractTaskinit 方法中解析自定义任务参数实体
  • 重写 handle 方法,调用 ShellCommandExecutorrun 方法,第一个参数传入自己的command,第二个参数传入 ProcessDao,设置相应的 exitStatusCode

基于非SHELL的任务(参见SqlTask)

  • 需要在 cn.escheduler.server.worker.task 下的 TaskManager 中创建自定义任务
  • 需要继承cn.escheduler.server.worker.task 下的 AbstractTask
  • 继承 AbstractParameters 自定义任务参数实体
  • 构造方法或者重写 AbstractTaskinit 方法中,解析自定义任务参数实体
  • 重写 handle 方法实现业务逻辑并设置相应的exitStatusCode
目录
相关文章
|
1天前
|
数据管理 API 调度
鸿蒙HarmonyOS应用开发 | 探索 HarmonyOS Next-从开发到实战掌握 HarmonyOS Next 的分布式能力
HarmonyOS Next 是华为新一代操作系统,专注于分布式技术的深度应用与生态融合。本文通过技术特点、应用场景及实战案例,全面解析其核心技术架构与开发流程。重点介绍分布式软总线2.0、数据管理、任务调度等升级特性,并提供基于 ArkTS 的原生开发支持。通过开发跨设备协同音乐播放应用,展示分布式能力的实际应用,涵盖项目配置、主界面设计、分布式服务实现及部署调试步骤。此外,深入分析分布式数据同步原理、任务调度优化及常见问题解决方案,帮助开发者掌握 HarmonyOS Next 的核心技术和实战技巧。
102 74
鸿蒙HarmonyOS应用开发 | 探索 HarmonyOS Next-从开发到实战掌握 HarmonyOS Next 的分布式能力
|
18天前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
48 4
|
1月前
|
消息中间件 监控 数据可视化
Apache Airflow 开源最顶级的分布式工作流平台
Apache Airflow 是一个用于创作、调度和监控工作流的平台,通过将工作流定义为代码,实现更好的可维护性和协作性。Airflow 使用有向无环图(DAG)定义任务,支持动态生成、扩展和优雅的管道设计。其丰富的命令行工具和用户界面使得任务管理和监控更加便捷。适用于静态和缓慢变化的工作流,常用于数据处理。
Apache Airflow 开源最顶级的分布式工作流平台
|
1月前
|
存储 运维 负载均衡
构建高可用性GraphRAG系统:分布式部署与容错机制
【10月更文挑战第28天】作为一名数据科学家和系统架构师,我在构建和维护大规模分布式系统方面有着丰富的经验。最近,我负责了一个基于GraphRAG(Graph Retrieval-Augmented Generation)模型的项目,该模型用于构建一个高可用性的问答系统。在这个过程中,我深刻体会到分布式部署和容错机制的重要性。本文将详细介绍如何在生产环境中构建一个高可用性的GraphRAG系统,包括分布式部署方案、负载均衡、故障检测与恢复机制等方面的内容。
106 4
构建高可用性GraphRAG系统:分布式部署与容错机制
|
24天前
|
机器学习/深度学习 人工智能 分布式计算
【AI系统】分布式通信与 NVLink
进入大模型时代后,AI的核心转向大模型发展,训练这类模型需克服大量GPU资源及长时间的需求。面对单个GPU内存限制,跨多个GPU的分布式训练成为必要,这涉及到分布式通信和NVLink技术的应用。分布式通信允许多个节点协作完成任务,而NVLink则是一种高速、低延迟的通信技术,用于连接GPU或GPU与其它设备,以实现高性能计算。随着大模型的参数、数据规模扩大及算力需求增长,分布式并行策略,如数据并行和模型并行,变得至关重要。这些策略通过将模型或数据分割在多个GPU上处理,提高了训练效率。此外,NVLink和NVSwitch技术的持续演进,为GPU间的高效通信提供了更强的支持,推动了大模型训练的快
38 0
|
2月前
|
NoSQL Java Redis
开发实战:使用Redisson实现分布式延时消息,订单30分钟关闭的另外一种实现!
本文详细介绍了 Redisson 延迟队列(DelayedQueue)的实现原理,包括基本使用、内部数据结构、基本流程、发送和获取延时消息以及初始化延时队列等内容。文章通过代码示例和流程图,逐步解析了延迟消息的发送、接收及处理机制,帮助读者深入了解 Redisson 延迟队列的工作原理。
|
2月前
|
消息中间件 中间件 数据库
NServiceBus:打造企业级服务总线的利器——深度解析这一面向消息中间件如何革新分布式应用开发与提升系统可靠性
【10月更文挑战第9天】NServiceBus 是一个面向消息的中间件,专为构建分布式应用程序设计,特别适用于企业级服务总线(ESB)。它通过消息队列实现服务间的解耦,提高系统的可扩展性和容错性。在 .NET 生态中,NServiceBus 提供了强大的功能,支持多种传输方式如 RabbitMQ 和 Azure Service Bus。通过异步消息传递模式,各组件可以独立运作,即使某部分出现故障也不会影响整体系统。 示例代码展示了如何使用 NServiceBus 发送和接收消息,简化了系统的设计和维护。
62 3
|
2月前
|
消息中间件 存储 监控
消息队列系统中的确认机制在分布式系统中如何实现?
消息队列系统中的确认机制在分布式系统中如何实现?
|
2月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
18天前
|
存储 NoSQL Java
使用lock4j-redis-template-spring-boot-starter实现redis分布式锁
通过使用 `lock4j-redis-template-spring-boot-starter`,我们可以轻松实现 Redis 分布式锁,从而解决分布式系统中多个实例并发访问共享资源的问题。合理配置和使用分布式锁,可以有效提高系统的稳定性和数据的一致性。希望本文对你在实际项目中使用 Redis 分布式锁有所帮助。
47 5
下一篇
DataWorks