10分钟-使用阿里云函数计算构建你的OCR智能识别云端小程序

本文涉及的产品
函数计算FC,每月15万CU 3个月
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介: 本文介绍使用支付宝小程序与函数计算的完成OCR光学字符识别的例子,十分钟快速开发一个轻量级可扩展云端小程序

本文介绍使用支付宝小程序与函数计算的完成OCR光学字符识别的例子,十分钟快速开发一个轻量级可扩展云端小程序

背景介绍

随着小程序的普遍流行,轻量级的应用开发越来越受到开发者们的关注,与此同时随着后端技术的Serverless化的优点逐渐明显,二者结合能快速构建高可用弹性的小程序;通过本教程,可让函数计算小白能快速入门开发实战,体验到函数计算给开发带来的便捷性和优越性,那就快点来动手构建起你的函数吧~

  • 函数计算

    • 阿里云函数计算是事件驱动的全托管计算服务,无需管理服务器等基础设施,只需编写代码并上传,函数计算会为您准备好计算资源,以弹性、可靠的方式运行您的代码
    • 借助函数计算和其他云端服务的集成,开发者只需要编写少量代码就可以串联多个服务完成复杂的功能,大大提高开发效率
  • 使用函数计算作为小程序后端实现,具有以下优点

    • 开发部署过程更简单:开发者们只需要关注业务逻辑本身,也只需要实现业务逻辑本身,
    • 应用稳定性可用性更高:函数计算为用户准备弹性、可靠的计算资源,具有根据流量自动scale特性
    • 节省系统资源:函数计算的 Serverless 与云服务器最大的不同之处在于,云服务器需要一直运行,而函数计算是按需计算。按需计算就意味着,在请求到来的时候,才运行函数,没有请求的时候,不耗费资源
  • 应用结构:

fc_ocr_flow

  1. 在小程序客户端上传图片,http trigger触发upload_ocr_image函数,函数接收文件上传到OSS
  2. OSS存入新图片,将触发process_image函数,读取新加入的图片,并调用Vision API进行字符识别和提取
  3. 将识别结果存储回OSS
  4. 小程序客户端请求识别结果,http trigger触发get_ocr_result函数,得到结果

开发步骤

1. 开发准备

2. 编写函数

  • 编写http请求函数:

    • 函数计算可以直接使用HTTP trigger触发,你可以快速编写任何接口,这里我们需要一个图片上传的接口:
    def upload_ocr_image(environ, start_response):
        '''
        upload ocr image function triggered by http request
        '''
        try:
            content = cgi.FieldStorage(fp=environ['wsgi.input'], environ=environ, keep_blank_values=True)
            for key in content.keys():
                image_binary = content.getvalue(key)
                auth = oss2.Auth(secret_id, secret_key)
                bucket = oss2.Bucket(auth, oss_endpoint, ocr_image_bucket)
                bucket.put_object(key, image_binary)
            status = '200 OK'
            response_headers = [('Content-type', 'text/plain')]
            start_response(status, response_headers)
            return ['upload image success']
        except (ValueError):
            return ['upload_ocr_image failed']
    
    
    AI 代码解读
    • 和一个请求图片OCR结果的函数:
def get_ocr_result(environ, start_response):
    '''
    get ocr result function triggered by http request
    '''
    try:
        request_body_size = int(environ.get('CONTENT_LENGTH', 0))
        request_body = environ['wsgi.input'].read(request_body_size)
        res_json = json.loads(request_body)
        auth = oss2.Auth(secret_id, secret_key)
        bucket = oss2.Bucket(auth, oss_endpoint, ocr_text_bucket)
        ocr_res = bucket.get_object(str(res_json['key'])).read()
        status = '200 OK'
        response_headers = [('Content-type', 'text/plain')]
        start_response(status, response_headers)
        return [str(ocr_res).encode('utf8')]
    except (ValueError):
        return ['get_ocr_result failed']
AI 代码解读
  • 编写OCR处理函数:

    • 使用OSS trigger,当有图片上传的时候触发OCR函数:
    def process_image(event, context):
         '''
         process image function triggered by OSS when a image file is uploaded
         '''
         evt = json.loads(event)
         evt = evt['events'][0]
         bucket_name = evt['oss']['bucket']['name']
         endpoint = 'oss-' +  evt['region'] + '.aliyuncs.com'
         obj_key = evt['oss']['object']['key']
         logger.info('New image uploaded: '  + str(obj_key))
         creds = context.credentials
         auth = oss2.StsAuth(creds.access_key_id, creds.access_key_secret, creds.security_token)
         bucket = oss2.Bucket(auth, endpoint, bucket_name)
         image_data = bucket.get_object(obj_key).read()
         detect_word_list = detect_text(image_data)
         text_bucket = oss2.Bucket(auth, endpoint, ocr_text_bucket)
         text_bucket.put_object(obj_key + '_ocr.txt', ' '.join(detect_word_list).encode(encoding='UTF8'))
         return 'Processed image file success, text can be seen in the text bucket'
     
     def detect_text(image_data):
         '''
         请求阿里云OCR Api
         '''
         encoded_image = base64.b64encode(image_data)
         detect_word_list = text_detect_api(encoded_image)
         logger.info("Detect word list : " + ' '.join(detect_word_list))
         return detect_word_list
    
     def text_detect_api(encodestr):
         method = 'POST'
         bodys = {}
         bodys['img'] = encodestr
         bodys['prob'] = 'false'
         bodys['charInfo'] = 'false'
         bodys['rotate'] = 'false'
         bodys['table'] = 'false'
         post_data = json.dumps(bodys).encode(encoding='UTF8')
         request = urllib2.Request(ocr_api_url, post_data)
         request.add_header('Authorization', 'APPCODE ' + ocr_api_appcode)
         request.add_header('Content-Type', 'application/json; charset=UTF-8')
         ctx = ssl.create_default_context()
         ctx.check_hostname = False
         ctx.verify_mode = ssl.CERT_NONE
         response = urllib2.urlopen(request, context=ctx)
         content = response.read()
         logger.info("text detection res: " + str(content))
         word_list = []
         words_info = json.loads(content)['prism_wordsInfo']
         for info in words_info:
             word_list.append(info['word'].encode('utf8'))
         return word_list
    AI 代码解读

3. 编写支付宝小程序

OCR识别的代码:其中<upload-image-endpoint><get-result-endpoint>分别为upload_ocr_imageget_ocr_result两个函数的触发地址,可以在函数控制台查看;
此处只展示小程序主要代码:

// 选择并上传图片
  attach() {
    my.chooseImage({
      chooseImage: 1,
      success: res => {
        const path = res.apFilePaths[0];
        console.log(path)
        var key = path
        my.uploadFile({
          url: '<upload-image-endpoint>',
          fileType: 'image',
          fileName: key,
          filePath: path,
          success: (ret) => {
            var start=new Date().getTime();
            var n = 2000
            while(true) {
              if(new Date().getTime()- start > n) break;
            }
            var resKey = key + '_ocr.txt'
            my.request({
                url: '<get-result-endpoint>',
                method: 'POST',
                data: {
                  key: resKey
                },
                dataType: 'json',
                success: function(Res) {
                  my.alert({ content: 'Get OCR Result = \n' + Res.data});
                },
                fail: function(Res) {
                  my.alert({content: 'get ocr result fail:' + Res.errorMessage});
                }
            });
          },
        });
      },
    });
  },
AI 代码解读

4. 部署函数

ROSTemplateFormatVersion: '2015-09-01'
Transform: 'Aliyun::Serverless-2018-04-03'
Resources:
test:
    Type: 'Aliyun::Serverless::Service'
    Properties:
    Policies:
        - AliyunOSSFullAccess # Managed Policy
        - AliyunLogFullAccess # Managed Policy
    LogConfig:
        Project: func-func-log
        Logstore: func-test

    ocr_extract:
    Type: 'Aliyun::Serverless::Function'
    Properties:
        Handler: cloud_func_ocr.process_image
        Runtime: python2.7
        Timeout: 60
        MemorySize: 512
        CodeUri: './'

    upload_image:
    Type: 'Aliyun::Serverless::Function'
    Properties:
        Handler: cloud_func_ocr.upload_ocr_image
        Runtime: python2.7
        Timeout: 60
        MemorySize: 512
        CodeUri: './'
    Events:
        http-trigger:
        Type: HTTP
        Properties:
            AuthType: ANONYMOUS
            Methods: ['GET', 'POST', 'PUT']
    
    get_ocr_result:
    Type: 'Aliyun::Serverless::Function'
    Properties:
        Handler: cloud_func_ocr.get_ocr_result
        Runtime: python2.7
        Timeout: 60
        MemorySize: 512
        CodeUri: './'
    Events:
        http-trigger:
        Type: HTTP
        Properties:
            AuthType: ANONYMOUS
            Methods: ['GET', 'POST', 'PUT']
AI 代码解读
  • 更改配置:替换cloud_func_ocr.py代码中的<>中的内容为你自己的相关配置
  • 进入代码所在目录,命令行运行$ fun deploy ,一键部署你的函数!

5. 测试

运行小程序模拟器,可以上传一张图片,得到OCR识别结果

img2

总结

本文介绍了支付宝小程序和函数计算结合的一个简单的案例,通过简单的开发步骤,能够快速构建弹性高可用的云端小程序来;当然本案例介绍的例子很简单,更多的可能性还等待着你们来探索!

更多函数计算开发相关问题,可以直接加入钉钉群咨询:
Screen_Shot_2019_06_07_at_1_47_38_PM

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
丛霄
+关注
目录
打赏
0
0
0
3
39
分享
相关文章
通义灵码 x 函数计算:构建高效开发流程,加速项目交付
通义灵码 x 函数计算:构建高效开发流程,加速项目交付
55 10
基于阿里云Serverless Kubernetes(ASK)的无服务器架构设计与实践
无服务器架构(Serverless Architecture)在云原生技术中备受关注,开发者只需专注于业务逻辑,无需管理服务器。阿里云Serverless Kubernetes(ASK)是基于Kubernetes的托管服务,提供极致弹性和按需付费能力。本文深入探讨如何使用ASK设计和实现无服务器架构,涵盖事件驱动、自动扩展、无状态设计、监控与日志及成本优化等方面,并通过图片处理服务案例展示具体实践,帮助构建高效可靠的无服务器应用。
云原生应用实战:基于阿里云Serverless的API服务开发与部署
随着云计算的发展,Serverless架构日益流行。阿里云函数计算(Function Compute)作为Serverless服务,让开发者无需管理服务器即可运行代码,按需付费,简化开发运维流程。本文从零开始,介绍如何使用阿里云函数计算开发简单的API服务,并探讨其核心优势与最佳实践。通过Python示例,演示创建、部署及优化API的过程,涵盖环境准备、代码实现、性能优化和安全管理等内容,帮助读者快速上手Serverless开发。
企业级API集成方案:基于阿里云函数计算调用DeepSeek全解析
DeepSeek R1 是一款先进的大规模深度学习模型,专为自然语言处理等复杂任务设计。它具备高效的架构、强大的泛化能力和优化的参数管理,适用于文本生成、智能问答、代码生成和数据分析等领域。阿里云平台提供了高性能计算资源、合规与数据安全、低延迟覆盖和成本效益等优势,支持用户便捷部署和调用 DeepSeek R1 模型,确保快速响应和稳定服务。通过阿里云百炼模型服务,用户可以轻松体验满血版 DeepSeek R1,并享受免费试用和灵活的API调用方式。
221 12
美的楼宇科技基于阿里云 EMR Serverless Spark 构建 LakeHouse 湖仓数据平台
美的楼宇科技基于阿里云 EMR Serverless Spark 建设 IoT 数据平台,实现了数据与 AI 技术的有效融合,解决了美的楼宇科技设备数据量庞大且持续增长、数据半结构化、数据价值缺乏深度挖掘的痛点问题。并结合 EMR Serverless StarRocks 搭建了 Lakehouse 平台,最终实现不同场景下整体性能提升50%以上,同时综合成本下降30%。
当OCR遇见大语言模型:智能文本处理的进化之路
简介:本文探讨光学字符识别(OCR)技术与大语言模型(LLM)结合带来的革新。传统OCR在处理模糊文本、复杂排版时存在局限,而LLM的语义理解、结构解析和多模态处理能力恰好弥补这些不足。文中通过代码实例展示了两者融合在错误校正、文档解析、多语言处理、语义检索及流程革新上的五大优势,并以财务报表解析为例,说明了该技术组合在实际应用中的高效性。此外,文章也展望了未来的技术发展趋势,包括多模态架构、小样本学习和边缘计算部署等方向,预示着文本处理技术正迈向智能认知的新时代。(240字)
阿里云 EMR Serverless StarRocks3.x,极速统一的湖仓新范式
阿里云 EMR Serverless StarRocks3.x,极速统一的湖仓新范式
基于阿里云 EMR Serverless Spark 版快速搭建OSS日志分析应用
基于阿里云 EMR Serverless Spark 版快速搭建OSS日志分析应用
云大使 X 函数计算 FC 专属活动上线!享返佣,一键打造 AI 应用
如今,AI 技术已经成为推动业务创新和增长的重要力量。但对于许多企业和开发者来说,如何高效、便捷地部署和管理 AI 应用仍然是一个挑战。阿里云函数计算 FC 以其免运维的特点,大大降低了 AI 应用部署的复杂性。用户无需担心底层资源的管理和运维问题,可以专注于应用的创新和开发,并且用户可以通过一键部署功能,迅速将 AI 大模型部署到云端,实现快速上线和迭代。函数计算目前推出了多种规格的云资源优惠套餐,用户可以根据实际需求灵活选择。
Serverless + AI 让应用开发更简单,加速应用智能化
Serverless + AI 让应用开发更简单,加速应用智能化

相关产品

  • 函数计算