使用EMR Spark Relational Cache跨集群同步数据

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: Relational Cache是EMR Spark支持的一个重要特性,主要通过对数据进行预组织和预计算加速数据分析,提供了类似传统数据仓库物化视图的功能。除了用于提升数据处理速度,Relational Cache还可以应用于其他很多场景,本文主要介绍如何使用Relational Cache跨集群同步数据表。

Relational Cache相关文章链接:

使用Relational Cache加速EMR Spark数据分析

背景
Relational Cache是EMR Spark支持的一个重要特性,主要通过对数据进行预组织和预计算加速数据分析,提供了类似传统数据仓库物化视图的功能。除了用于提升数据处理速度,Relational Cache还可以应用于其他很多场景,本文主要介绍如何使用Relational Cache跨集群同步数据表。

通过统一的Data Lake管理所有数据是许多公司追求的目标,但是在现实中,由于多个数据中心,不同网络Region,甚至不同部门的存在,不可避免的会存在多个不同的大数据集群,不同集群的数据同步需求普遍存在,此外,集群迁移,搬站涉及到的新老数据同步也是一个常见的问题。数据同步的工作通常是一个比较痛苦的过程,迁移工具的开发,增量数据处理,读写的同步,后续的数据比对等等,需要很多的定制开发和人工介入。基于Relational Cache,用户可以简化这部分的工作,以较小的代价实现跨集群的数据同步。
下面我们以具体示例展示如何通过EMR Spark Relational Cache实现跨集群的数据同步。

使用Relational Cache同步数据

假设我们有A,B两个集群,需要把activity_log表的数据从集群A同步到集群B中,且在整个过程中,会持续有新的数据插入到activity_log表中,A集群中activity_log的建表语句如下:

  user_id STRING,
  act_type STRING,
  module_id INT,
  d_year INT)
USING JSON
PARTITIONED BY (d_year)

插入两条信息代表历史信息:

为activity_log表建一个Relational Cache:

CACHE TABLE activity_log_sync
REFRESH ON COMMIT
DISABLE REWRITE
USING JSON
PARTITIONED BY (d_year)
LOCATION "hdfs://192.168.1.36:9000/user/hive/data/activity_log"
AS SELECT user_id, act_type, module_id, d_year FROM activity_log

REFRESH ON COMMIT表示当源表数据发生更新时,自动更新cache数据。通过LOCATION可以指定cache的数据的存储地址,我们把cache的地址指向B集群的HDFS从而实现数据从集群A到集群B的同步。此外Cache的字段和Partition信息均与源表保持一致。

在集群B中,我们也创建一个activity_log表,创建语句如下:

  user_id STRING,
  act_type STRING,
  module_id INT,
  d_year INT)
USING JSON
PARTITIONED BY (d_year)
LOCATION "hdfs:///user/hive/data/activity_log"

执行MSCK REPAIR TABLE activity_log自动修复相关meta信息,然后执行查询语句,可以看到在集群B中,已经能够查到之前集群A的表中插入的两条数据。

image

在集群A中继续插入新的数据:

INSERT INTO TABLE activity_log PARTITION (d_year = 2018) VALUES("user_011", "SUBCRIBE", 24);

然后在集群B中执行MSCK REPAIR TABLE activity_log并再次查询activity_log表,可以发现数据已经自动同步到集群B的activity_log表中,对于分区表,当有新的分区数据加入时,Relational Cache可以增量的同步新的分区数据,而不是重新同步全部数据。
image

如果集群A中activity_log的新增数据不是通过Spark插入的,而是通过Hive或其他方式外部导入到Hive表中,用户可以通过REFRESH TABLE activity_log_sync语句手工或通过脚本触发同步数据,如果新增数据是按照分区批量导入,还可以通过类似REFRESH TABLE activity_log_sync WITH TABLE activity_log PARTITION (d_year=2018)语句增量同步分区数据。

Relational Cache可以保证集群A和集群B中activity_log表的数据一致性,依赖activity_log表的下游任务或应用可以随时切换到集群B,同时用户也可以随时将写入数据到集群A中activity_log表的应用或服务暂停,指向集群B中的activity_log表并重启服务,从而完成上层应用或服务的迁移。完成后清理集群A中的activity_log和activity_log_sync即可。

总结

本文介绍了如何通过Relational Cache在不同大数据集群的数据表之间同步数据,非常简单便捷。除此之外,Relational Cache也可以应用到很多其他的场景中,比如构建秒级响应的OLAP平台,交互式的BI,Dashboard应用,加速ETL过程等等,之后我们也会和大家分享在更多场景中Relational Cache的最佳实践。

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
1月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
50 3
|
26天前
|
SQL 分布式计算 Serverless
EMR Serverless Spark:一站式全托管湖仓分析利器
本文根据2024云栖大会阿里云 EMR 团队负责人李钰(绝顶) 演讲实录整理而成
119 2
|
2月前
|
SQL 分布式计算 Serverless
阿里云 EMR Serverless Spark 版正式开启商业化
阿里云 EMR Serverless Spark 版正式开启商业化,内置 Fusion Engine,100% 兼容开源 Spark 编程接口,相比于开源 Spark 性能提升300%;提供 Notebook 及 SQL 开发、调试、发布、调度、监控诊断等一站式数据开发体验!
151 3
阿里云 EMR Serverless Spark 版正式开启商业化
|
3月前
|
分布式计算 Serverless 数据处理
EMR Serverless Spark 实践教程 | 通过 Apache Airflow 使用 Livy Operator 提交任务
Apache Airflow 是一个强大的工作流程自动化和调度工具,它允许开发者编排、计划和监控数据管道的执行。EMR Serverless Spark 为处理大规模数据处理任务提供了一个无服务器计算环境。本文为您介绍如何通过 Apache Airflow 的 Livy Operator 实现自动化地向 EMR Serverless Spark 提交任务,以实现任务调度和执行的自动化,帮助您更有效地管理数据处理任务。
205 0
|
3月前
|
存储 缓存 数据管理
阿里云EMR数据湖文件系统问题之JindoFS数据孤岛的问题如何解决
阿里云EMR数据湖文件系统问题之JindoFS数据孤岛的问题如何解决
|
3月前
|
分布式计算 大数据 MaxCompute
EMR Remote Shuffle Service实践问题之阿里云RSS的开源计划内容如何解决
EMR Remote Shuffle Service实践问题之阿里云RSS的开源计划内容如何解决
|
3月前
|
分布式计算 测试技术 调度
EMR Remote Shuffle Service实践问题之集群中落地阿里云RSS如何解决
EMR Remote Shuffle Service实践问题之集群中落地阿里云RSS如何解决
|
1月前
|
SQL 存储 缓存
阿里云EMR StarRocks X Paimon创建 Streaming Lakehouse
本文介绍了阿里云EMR StarRocks在数据湖分析领域的应用,涵盖StarRocks的数据湖能力、如何构建基于Paimon的实时湖仓、StarRocks与Paimon的最新进展及未来规划。文章强调了StarRocks在极速统一、简单易用方面的优势,以及在数据湖分析加速、湖仓分层建模、冷热融合及全链路ETL等场景的应用。
271 2
阿里云EMR StarRocks X Paimon创建 Streaming Lakehouse
|
29天前
|
SQL 存储 缓存
降本60% ,阿里云 EMR StarRocks 全新发布存算分离版本
阿里云 EMR Serverless StarRocks 现已推出全新存算分离版本,该版本不仅基于开源 StarRocks 进行了全面优化,实现了存储与计算解耦架构,还在性能、弹性伸缩以及多计算组隔离能力方面取得了显著进展。
260 6
|
1月前
|
SQL 存储 缓存
阿里云EMR StarRocks X Paimon创建 Streaming Lakehouse
讲师焦明烨介绍了StarRocks的数据湖能力,如何使用阿里云EMR StarRocks构建基于Paimon的极速实时湖仓,StarRocks与Paimon的最新进展及未来规划。
122 3
下一篇
无影云桌面