阿里云智能数据构建与管理 Dataphin公测,助力企业数据中台建设

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 阿里云智能数据构建与管理 Dataphin,近日重磅上线公共云,开启智能研发版本的公共云公测!在此之前,Dataphin以独立部署方式输出并服务线下客户,已助力多家大型客户高效自动化构建企业数据中台,不仅大幅度提升大数据研发效率,实现数据资产的标准化管理,更通过数据服务体系让数据智能驱动业务。

阿里云智能数据构建与管理 Dataphin (下简称“Dataphin”)近日重磅上线公共云,开启智能研发版本的公共云公测!
在此之前,Dataphin以独立部署方式输出并服务线下客户,已助力多家大型客户高效自动化构建企业数据中台,不仅大幅度提升大数据研发效率,实现数据资产的标准化管理,更通过数据服务体系让数据智能驱动业务。
经过半年时间准备,Dataphin已于2019年4月23日正式登陆阿里云公共云,以满足更广泛的客户需求。下图为Dataphin在企业数据中台的定位:

test


Dataphin,亦称智能数据构建与管理平台——旨在基于阿里巴巴中台实践中沉淀的核心方法论和技术体系,提供从数据采,建,管,用的全链路、一站式的大数据能力,以助力企业打造标准统一、融会贯通、资产化、服务化、闭环自优化的智能数据体系。
那么Dataphin如何助力企业发掘大数据价值,完成企业数字化转型?下面让我们深度了解一下Dataphin 的前世今生。

1. Dataphin源自阿里巴巴多年的大数据实战沉淀

Dataphin是多年来阿里巴巴大数据建设的实战沉淀,重点解决了阿里巴巴集团内部数据建设过程中遇到的多种问题,比如:

(1)数据不统一:标准规范难、命名不统一、定义不统一、计算逻辑不统一,对业务响应慢;
(2)数据未打通:孤岛现象严重、缺乏融通,价值挖掘不够;
(3)维护困难:源系统或业务变更与数据不同步,数据质量难保障;
(4)时效性差:重复建设导致任务链冗长、任务繁多,计算资源紧张,数据批量计算晚、实时性不够且范围窄、即时查询返回结果慢……
面对上述问题,阿里巴巴内部的大数据团队进行了探索、实践,将经验沉淀为方法论、工具,并从实际场景出发、不断迭代,逐渐形成了一套阿里巴巴大数据能力的框架。即三个One:OneData、OneID、OneService,进而推动阿里巴巴数据中台的建设。其中阿里巴巴大数据能力的框架,即落地成为今天的Dataphin。

2. Dataphin的核心能力

Dataphin的核心价值在于数据规范定义,完全消除数据的二义性,保证业务数据标准化、规范化生产,具体而言:
(1)提高数据研发效率,标准化构建数据仓库,系统自动生产代码和调度任务;
(2)发现并提升数据价值,可视化、全链路地追踪和分析数据资产;
(3)所见即所得地用数据,自动聚合的主题数据可极大简化查询和分析代码。

test

3. Dataphin的产品优势

(1)作为PaaS层工具产品,Dataphin可进行可视化数据建模、代码自动化生成、数据资产图谱自动化生成——通过可视化配置方式建设数据模型,提交后系统自动化生成代码,同时有一个直观的可视化资产图谱揭示数据关系、便于确定数据使用方式。
(2)Dataphin拥有代码自动化生产的能力,新颖且具有通用性。历时8年实战打磨的OneData数据智能黑盒技术,通过智能计算与存储算法,轻松实现一站式数仓建设,产品端简单操作录入数据模型信息后,一键提交,即可获取稳定的、计算存储最优的数据生产代码与任务。
(3)Dataphin降低企业数仓建设的复杂度,建模研发设计与开发一体化完成,极大提高原有完全人工编写文档+代码的效率(可视化勾选填写后,代码和数据自动化生产),也降低企业数仓建设复杂度。同时数仓模型的知识得到沉淀,可保证后续的迭代更加系统化、自动化、可持续发展。

test

4.Dataphin的应用场景及案例

某餐饮集团,该集团与多数公司一样,具有线上线下多个客户触达渠道,业务扩张快,客户的门店数量及会员数量快速增长,传统的数据加工处理和管理能力已经无法匹配业务的发展。在此情景下,客户通过阿里云对企业的业务系统和数据平台进行升级,3个月不到的时间,基于Dataphin快速构建企业数据中台的数据,并基于Quick BI进一步实现对会员数据的分析和挖掘,最终实现业务上千人千面的个性化推荐。此过程中,实现了:

(1)多源异构的数据上云:多种渠道、多种类型的业务数据库中的数据,同步至云上,源数据得到最大化集中与丰富;
(2)数据规范定义和数仓研发:通过可视化、标准化配置会员等主题逻辑模型,自动化生成物理模型和代码脚本,保证数据规范性,同时提高数据研发效率;
(3)标签体系的快速构建:结合Quick BI,完成标签设计、生产、分析、展现,偏好类标签自助构建和消费;
(4)数据资产管理和元数据查询:基于标准化构建沉淀的高质量数据资产,如会员主题数据,可视化地分析和管理数据资产,快速便捷地查询元数据详情及使用数据。

test

5. Dataphin适合什么样的客户?

前面介绍了Dataphin的前世今生后,那么它适合于什么样的企业呢?
对企业来说,Dataphin是企业数据中台构建的核心组成部分,帮助企业完成大数据的智能构建及管理,助力企业实现大数据的采集集成、加工处理、资产管理及数据服务对接于大数据应用及业务前台流程,是整个企业数据资产化及价值化实现的平台和引擎。
因此Dataphin适合所有希望用数据智能驱动业务的客户,既包括IT侧有数据湖,数据仓库,消费者数据平台(CDP)等系统建设需求的客户,更包括希望通过系统化搭建数据中台体系全方位助力业务的客户。目前已经应用于零售、传媒、地产、金融等行业。
Dataphin已上线阿里云官网,支持公共云客户订购使用。未来,Dataphin将持续不断将阿里中台体系的最佳实践转化为产品能力,快速迭代升级,坚持致力于协助各行各业的企业完成数字化转型,开启数据智能的新时代。

了解更多产品详情,请点击:https://www.aliyun.com/product/dataphin

阿里云新品发布会,获取更多前沿发布:
阿里云新品发布·周刊:持续曝光中

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
2月前
|
机器学习/深度学习 敏捷开发 存储
数据飞轮:激活数据中台的数据驱动引擎
数据飞轮:激活数据中台的数据驱动引擎
|
4月前
|
数据采集 存储 监控
从零到一建设数据中台 - 数据治理路径
从零到一建设数据中台 - 数据治理路径
121 6
|
3月前
|
SQL 运维 Oracle
【迁移秘籍揭晓】ADB如何助你一臂之力,轻松玩转Oracle至ADB的数据大转移?
【8月更文挑战第27天】ADB(Autonomous Database)是由甲骨文公司推出的自动化的数据库服务,它极大简化了数据库的运维工作。在从传统Oracle数据库升级至ADB的过程中,数据迁移至关重要。
66 0
|
4月前
|
存储 JSON Cloud Native
数据库ADB-PG问题之数据源处理如何解决
数据库ADB-PG问题之数据源处理如何解决
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
唤醒数据中台潜力:加速数据飞轮转动,实现数据驱动的秘籍
本文探讨了如何通过数据飞轮激活数据中台的潜力,实现数据驱动的创新。文章分析了数据中台面临的挑战,如数据孤岛和工具复杂性,并提出了建立统一数据治理架构、引入自动化数据管道和强化数据与业务融合等策略。通过实际案例和技术示例,展示了如何利用数据飞轮实现业务增长,强调了数据可视化和文化建设的重要性。旨在帮助企业充分挖掘数据价值,提升决策效率。
63 1
唤醒数据中台潜力:加速数据飞轮转动,实现数据驱动的秘籍
|
2月前
|
存储 机器学习/深度学习 数据管理
数据技术的进化史:从数据仓库到数据中台再到数据飞轮
数据技术的进化史:从数据仓库到数据中台再到数据飞轮
|
2月前
|
机器学习/深度学习 消息中间件 搜索推荐
【数据飞轮】驱动业务增长的高效引擎 —从数据仓库到数据中台的技术进化与实战
在数据驱动时代,企业逐渐从数据仓库过渡到数据中台,并进一步发展为数据飞轮。本文详细介绍了这一演进路径,涵盖数据仓库的基础存储与查询、数据中台的集成与实时决策,以及数据飞轮的自动化增长机制。通过代码示例展示如何在实际业务中运用数据技术,实现数据的最大价值,推动业务持续优化与增长。
79 4
|
2月前
|
机器学习/深度学习 搜索推荐 算法
从数据中台到数据飞轮:企业升级的必然之路
在探讨是否需从数据中台升级至数据飞轮前,我们应先理解两者之间的关系。数据中台作为数据集成、清洗及治理的强大平台,是数据飞轮的基础;而要实现数据飞轮,则需进一步增强数据自动化处理与智能化利用能力。借助机器学习与人工智能技术,“转动”数据并创建反馈机制,使数据在循环中不断优化,如改进产品推荐系统,进而形成数据飞轮。此外,为了适应市场变化,企业还需提高数据基础设施的敏捷性和灵活性,这可通过采用微服务架构和云计算技术来达成,从而确保数据系统的快速扩展与调整,支持数据飞轮高效运转。综上所述,数据中台虽为基础,但全面升级至数据飞轮则需在数据自动化处理、反馈机制及系统敏捷性方面进行全面提升。
103 14
|
1月前
|
机器学习/深度学习 JSON JavaScript
LangChain-21 Text Splitters 内容切分器 支持多种格式 HTML JSON md Code(JS/Py/TS/etc) 进行切分并输出 方便将数据进行结构化后检索
LangChain-21 Text Splitters 内容切分器 支持多种格式 HTML JSON md Code(JS/Py/TS/etc) 进行切分并输出 方便将数据进行结构化后检索
26 0
|
1月前
|
数据管理 数据挖掘 大数据
数据飞轮崛起:数据中台真的过时了吗?
数据飞轮崛起:数据中台真的过时了吗?