【直播预告】Python系列直播——Python 进阶教程

简介: 课程简介:python 中的函数,类,魔法方法,异步io,多线程,多进程等是学习python中不可缺少的部分。我将对Python这些概念做一些我自己的理解,并带大家深入理解这些概念和一些技巧。 主讲人:夏溪辰——云栖社区特邀爬虫工程师 直播时间:每周四 19:30——20:30 主题:1 pyt.

课程简介:python 中的函数,类,魔法方法,异步io,多线程,多进程等是学习python中不可缺少的部分。我将对Python这些概念做一些我自己的理解,并带大家深入理解这些概念和一些技巧。

主讲人:夏溪辰——云栖社区特邀爬虫工程师

直播时间:每周四 19:30——20:30

主题:1 python中的一切皆对象
直播时间:5月9日(周四)
PPT下载:https://yq.aliyun.com/download/3554
直播回顾:https://yq.aliyun.com/live/1095

主题:2 深入类与对象
直播时间:5月16日(周四)
直播回顾:https://yq.aliyun.com/live/1094
PPT下载:https://yq.aliyun.com/download/3556

主题: 3 魔法方法
直播时间:6月11日(周二)
直播回顾:https://yq.aliyun.com/live/1149

主题:4 自定义序列
直播时间:6月13日(周四)

主题:5 关于python的内存引用
直播时间:6月6日(周四)

主题:6 python 中的 collection模块
直播时间:6月13日(周四)

[钉钉扫二维码(免费)观看直播](http://tb.cn/UQkRRHw

_2019_01_15_10_28_39

详情>>>>

4f480814_5528_4b0d_9664_362df6ca43f9

相关文章
|
20天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
46 8
|
20天前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
60 7
|
20天前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
47 4
|
20天前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
42 5
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之 Scipy 显著性检验第9部分,介绍了显著性检验的基本概念、作用及原理,通过样本信息判断假设是否成立。着重讲解了使用scipy.stats模块进行显著性检验的方法,包括正态性检验中的偏度和峰度计算,以及如何利用normaltest()函数评估数据是否符合正态分布。示例代码展示了如何计算一组随机数的偏度和峰度。
33 1
|
2月前
|
BI Python
SciPy 教程 之 Scipy 显著性检验 8
本教程介绍SciPy中显著性检验的应用,包括如何利用scipy.stats模块进行显著性检验,以判断样本与总体假设间的差异是否显著。通过示例代码展示了如何使用describe()函数获取数组的统计描述信息,如观测次数、最小最大值、均值、方差等。
30 1
|
2月前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的基础教程
【10月更文挑战第41天】本文旨在为初学者提供一个关于如何使用Python语言进行数据分析的入门指南。我们将通过实际案例,了解数据处理的基本步骤,包括数据的导入、清洗、处理、分析和可视化。文章将用浅显易懂的语言,带领读者一步步掌握数据分析师的基本功,并在文末附上完整的代码示例供参考和实践。
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 6
显著性检验是统计学中用于判断样本与总体假设间是否存在显著差异的方法。SciPy的scipy.stats模块提供了执行显著性检验的工具,如T检验,用于比较两组数据的均值是否来自同一分布。通过ttest_ind()函数,可以获取两样本的t统计量和p值,进而判断差异是否显著。示例代码展示了如何使用该函数进行T检验并输出结果。
31 1
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 3
本教程介绍Scipy显著性检验,包括其基本概念、原理及应用。显著性检验用于判断样本与总体假设间的差异是否显著,是统计学中的重要工具。Scipy通过`scipy.stats`模块提供了相关功能,支持双边检验等方法。
41 1
|
2月前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 插值 2
SciPy插值教程:介绍插值概念及其在数值分析中的应用,特别是在处理数据缺失时的插补和平滑数据集。SciPy的`scipy.interpolate`模块提供了强大的插值功能,如一维插值和样条插值。通过`UnivariateSpline()`函数,可以轻松实现单变量插值,示例代码展示了如何对非线性点进行插值计算。
32 3