Serverless助力AI计算:阿里云ACK Serverless/ECI发布GPU容器实例

本文涉及的产品
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
函数计算FC,每月15万CU 3个月
简介: ACK Serverless(Serverless Kubernetes)近期基于ECI(弹性容器实例)正式推出GPU容器实例支持,让用户以serverless的方式快速运行AI计算任务,极大降低AI平台运维的负担,显著提升整体计算效率。

ACK Serverless(Serverless Kubernetes)近期基于ECI(弹性容器实例)正式推出GPU容器实例支持,让用户以serverless的方式快速运行AI计算任务,极大降低AI平台运维的负担,显著提升整体计算效率。

AI计算离不开GPU已经是行业共识,然而从零开始搭建GPU集群环境是件相对复杂的任务,包括GPU规格购买、机器准备、驱动安装、容器环境安装等。GPU资源的serverless交付方式,充分的展现了serverless的核心优势,其向用户提供标准化而且“开箱即用”的资源供给能力,用户无需购买机器也无需登录到节点安装GPU驱动,极大降低了AI平台的部署复杂度,让客户关注在AI模型和应用本身而非基础设施的搭建和维护,让使用GPU/CPU资源就如同打开水龙头一样简单方便,同时按需计费的方式让客户按照计算任务进行消费, 避免包年包月带来的高成本和资源浪费。

image

在ACK Serverless中创建挂载GPU的pod也非常简单,通过annotation指定所需GPU的类型,同时在resource.limits中指定GPU的个数即可(也可指定instance-type)。每个pod独占GPU,暂不支持vGPU,GPU实例的收费与ECS GPU类型收费一致,不产生额外费用,目前阿里云ECI提供如下几种规格的GPU类型:(详情请参考https://help.aliyun.com/document_detail/114581.html

vCPU 内存(GiB) GPU类型 GPU count
2 8.0 P4 1
4 16.0 P4 1
8 32.0 P4 1
16 64.0 P4 1
32 128.0 P4 2
56 224.0 P4 4
8 32.0 V100 1
32 128.0 V100 4
64 256.0 V100 8

下面让我们通过一个简单的图片识别示例,展示如何在ACK Serverless中快速进行深度学习任务的计算。

创建Serverless Kubernetes集群

image

使用tensorflow进行图片识别

image
对于我们人类此图片的识别是极其简单不过的,然而对于机器而言则不是一件轻松的事情,其中依赖大量数据的输入和模型算法的训练,下面我们将基于已有的tensorflow模型对上个图片进行识别。

在这里我们选用了tensorflow的入门示例
镜像registry-vpc.cn-hangzhou.aliyuncs.com/ack-serverless/tensorflow是基于tensorflow官方镜像tensorflow/tensorflow:1.13.1-gpu-py3构建,在里面已经下载了示例所需models仓库:https://github.com/tensorflow/models

在serverless集群控制台基于模版创建或者使用kubectl部署如下yaml文件,pod中指定GPU类型为P4,GPU个数为1。

apiVersion: v1
kind: Pod
metadata:
  name: tensorflow
  annotations:
    k8s.aliyun.com/eci-gpu-type : "P4"
spec:
  containers:
  - image: registry-vpc.cn-hangzhou.aliyuncs.com/ack-serverless/tensorflow
    name: tensorflow
    command:
    - "sh"
    - "-c"
    - "python models/tutorials/image/imagenet/classify_image.py"
    resources:
      limits:
        nvidia.com/gpu: "1"
  restartPolicy: OnFailure

创建pod等待执行完成,查看pod日志:

# kubectl get pod -a
NAME         READY     STATUS      RESTARTS   AGE
tensorflow   0/1       Completed   0          6m


# kubectl logs tensorflow
>> Downloading inception-2015-12-05.WARNING:tensorflow:From models/tutorials/image/imagenet/classify_image.py:141: __init__ (from tensorflow.python.platform.gfile) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.gfile.GFile.
2019-05-05 09:43:30.591730: W tensorflow/core/framework/op_def_util.cc:355] Op BatchNormWithGlobalNormalization is deprecated. It will cease to work in GraphDef version 9. Use tf.nn.batch_normalization().
2019-05-05 09:43:30.806869: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2019-05-05 09:43:31.075142: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-05-05 09:43:31.075725: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x4525ce0 executing computations on platform CUDA. Devices:
2019-05-05 09:43:31.075785: I tensorflow/compiler/xla/service/service.cc:158]   StreamExecutor device (0): Tesla P4, Compute Capability 6.1
2019-05-05 09:43:31.078667: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2494220000 Hz
2019-05-05 09:43:31.078953: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x4ad0660 executing computations on platform Host. Devices:
2019-05-05 09:43:31.078980: I tensorflow/compiler/xla/service/service.cc:158]   StreamExecutor device (0): <undefined>, <undefined>
2019-05-05 09:43:31.079294: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties:
name: Tesla P4 major: 6 minor: 1 memoryClockRate(GHz): 1.1135
pciBusID: 0000:00:08.0
totalMemory: 7.43GiB freeMemory: 7.31GiB
2019-05-05 09:43:31.079327: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
2019-05-05 09:43:31.081074: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-05-05 09:43:31.081104: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990]      0
2019-05-05 09:43:31.081116: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0:   N
2019-05-05 09:43:31.081379: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 7116 MB memory) -> physical GPU (device: 0, name: Tesla P4, pci bus id: 0000:00:08.0, compute capability: 6.1)
2019-05-05 09:43:32.200163: I tensorflow/stream_executor/dso_loader.cc:152] successfully opened CUDA library libcublas.so.10.0 locally
>> Downloading inception-2015-12-05.tgz 100.0%
Successfully downloaded inception-2015-12-05.tgz 88931400 bytes.
giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca (score = 0.89107)
indri, indris, Indri indri, Indri brevicaudatus (score = 0.00779)
lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens (score = 0.00296)
custard apple (score = 0.00147)
earthstar (score = 0.00117)

pod的日志显示模型已经成功检测到图片为panda。可以看到在整个机器学习计算过程中,我们只是运行了一个pod,当pod变成terminated状态后任务完成,没有ecs环境准备,没有购买GPU机器,没有安装Nivida GPU驱动,没有安装docker软件,计算力如同水电一样按需使用。

最后

ACK中虚拟节点也同样基于ECI实现了GPU的支持,使用方式与ACK Serverless相同(但需要把pod指定调度到虚拟节点上,或者把pod创建在有virtual-node-affinity-injection=enabled label的namespace中),基于虚拟节点的方式可以更灵活的支持多种深度学习框架,如kubeflow、arena或其他自定义CRD。

示例如下:

apiVersion: v1
kind: Pod
metadata:
  name: tensorflow
  annotations:
    k8s.aliyun.com/eci-gpu-type : "P4"
spec:
  containers:
  - image: registry-vpc.cn-hangzhou.aliyuncs.com/ack-serverless/tensorflow
    name: tensorflow
    command:
    - "sh"
    - "-c"
    - "python models/tutorials/image/imagenet/classify_image.py"
    resources:
      limits:
        nvidia.com/gpu: "1"
  restartPolicy: OnFailure
  nodeName: virtual-kubelet
相关实践学习
基于ACK Serverless轻松部署企业级Stable Diffusion
本实验指导您在容器服务Serverless版(以下简称 ACK Serverless )中,通过Knative部署满足企业级弹性需求的Stable Diffusion服务。同时通过对该服务进行压测实验,体验ACK Serverless 弹性能力。
Kubernetes极速入门
Kubernetes(K8S)是Google在2014年发布的一个开源项目,用于自动化容器化应用程序的部署、扩展和管理。Kubernetes通常结合docker容器工作,并且整合多个运行着docker容器的主机集群。 本课程从Kubernetes的简介、功能、架构,集群的概念、工具及部署等各个方面进行了详细的讲解及展示,通过对本课程的学习,可以对Kubernetes有一个较为全面的认识,并初步掌握Kubernetes相关的安装部署及使用技巧。本课程由黑马程序员提供。 &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情:&nbsp;https://www.aliyun.com/product/kubernetes
目录
相关文章
|
15天前
|
专有云 Serverless 持续交付
亚太唯一,阿里云再度入选Gartner®容器管理魔力象限领导者
Gartner正式发布 2024《容器管理魔力象限》报告,阿里云再度成为中国唯一一家入选「领导者象限」的科技公司。
|
11天前
|
人工智能 专有云 Serverless
亚太唯一!阿里云再度入选Gartner®容器管理魔力象限领导者
亚太唯一!阿里云再度入选Gartner®容器管理魔力象限领导者
49 2
|
2月前
|
运维 Kubernetes 调度
阿里云容器服务 ACK One 分布式云容器企业落地实践
3年前的云栖大会,我们发布分布式云容器平台ACK One,随着3年的发展,很高兴看到ACK One在混合云,分布式云领域帮助到越来越多的客户,今天给大家汇报下ACK One 3年来的发展演进,以及如何帮助客户解决分布式领域多云多集群管理的挑战。
阿里云容器服务 ACK One 分布式云容器企业落地实践
|
2月前
|
人工智能 Prometheus 监控
使用 NVIDIA NIM 在阿里云容器服务(ACK)中加速 LLM 推理
本文介绍了在阿里云容器服务 ACK 上部署 NVIDIA NIM,结合云原生 AI 套件和 KServe 快速构建高性能模型推理服务的方法。通过阿里云 Prometheus 和 Grafana 实现实时监控,并基于排队请求数配置弹性扩缩容策略,提升服务稳定性和效率。文章提供了详细的部署步骤和示例,帮助读者快速搭建和优化模型推理服务。
144 7
使用 NVIDIA NIM 在阿里云容器服务(ACK)中加速 LLM 推理
|
2月前
|
存储 Kubernetes 关系型数据库
阿里云ACK备份中心,K8s集群业务应用数据的一站式灾备方案
阿里云ACK备份中心,K8s集群业务应用数据的一站式灾备方案
|
2月前
|
人工智能 运维 监控
阿里云ACK容器服务生产级可观测体系建设实践
阿里云ACK容器服务生产级可观测体系建设实践
|
28天前
|
运维 Kubernetes 数据处理
阿里云Argo X K8s玩转工作流引擎,实现大规模并行计算
Kubernetes已经成为事实的云原生操作系统,成为业务上云、容器化的标准。从过去无状态应用、企业核心应用,到现在AI时代的数据处理、AI训练、科学仿真等,越来越多的离线任务跑在K8s上。
|
3月前
|
机器学习/深度学习 编解码 人工智能
阿里云gpu云服务器租用价格:最新收费标准与活动价格及热门实例解析
随着人工智能、大数据和深度学习等领域的快速发展,GPU服务器的需求日益增长。阿里云的GPU服务器凭借强大的计算能力和灵活的资源配置,成为众多用户的首选。很多用户比较关心gpu云服务器的收费标准与活动价格情况,目前计算型gn6v实例云服务器一周价格为2138.27元/1周起,月付价格为3830.00元/1个月起;计算型gn7i实例云服务器一周价格为1793.30元/1周起,月付价格为3213.99元/1个月起;计算型 gn6i实例云服务器一周价格为942.11元/1周起,月付价格为1694.00元/1个月起。本文为大家整理汇总了gpu云服务器的最新收费标准与活动价格情况,以供参考。
阿里云gpu云服务器租用价格:最新收费标准与活动价格及热门实例解析
|
2月前
|
机器学习/深度学习 存储 人工智能
阿里云GPU云服务器实例规格gn6v、gn7i、gn6i实例性能及区别和选择参考
阿里云的GPU云服务器产品线在深度学习、科学计算、图形渲染等多个领域展现出强大的计算能力和广泛的应用价值。本文将详细介绍阿里云GPU云服务器中的gn6v、gn7i、gn6i三个实例规格族的性能特点、区别及选择参考,帮助用户根据自身需求选择合适的GPU云服务器实例。
阿里云GPU云服务器实例规格gn6v、gn7i、gn6i实例性能及区别和选择参考
|
3月前
|
编解码 分布式计算 Linux
最新阿里云服务器、轻量应用服务器、GPU云服务器活动价格参考
阿里云服务器产品包含云服务器、轻量应用服务器、GPU云服务器等,本文汇总了这些云服务器当下最新的实时活动价格情况,包含经济型e实例云服务器价格、通用算力型u1实例云服务器价格、第七代云服务器价格、轻量应用服务器最新价格、GPU云服务器价格,以供大家参考。
最新阿里云服务器、轻量应用服务器、GPU云服务器活动价格参考

热门文章

最新文章

相关产品

  • 函数计算