像Google一样构建机器学习系统 - 在阿里云上搭建Kubeflow Pipelines

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 谈到机器学习工作流平台,Google的工程经验非常丰富,它的TensorFlow Extended机器学习平台支撑了Google的搜索,翻译,视频等核心业务;更重要的是其对机器学习领域工程效率问题的理解深刻,

本系列将利用阿里云容器服务,帮助您上手Kubeflow Pipelines.

介绍

机器学习的工程复杂度,除了来自于常见的软件开发问题外,还和机器学习数据驱动的特点相关。而这就带来了其工作流程链路更长,数据版本失控,实验难以跟踪、结果难以重现,模型迭代成本巨大等一系列问题。为了解决这些机器学习固有的问题,很多企业构建了内部机器学习平台来管理机器学习生命周期,其中最有名的是Google的Tensorflow Extended,Facebook的FBLearner Flow,Uber的Michelangelo,遗憾的是这些平台都需要绑定在公司内部的基础设施之上,无法彻底开源。而这些机器学习平台的骨架就是机器学习工作流系统,它可以让数据科学家灵活定义自己的机器学习流水线,重用已有的数据处理和模型训练能力,进而更好的管理机器学习生命周期。

1_overview

谈到机器学习工作流平台,Google的工程经验非常丰富,它的TensorFlow Extended机器学习平台支撑了Google的搜索,翻译,视频等核心业务;更重要的是其对机器学习领域工程效率问题的理解深刻,

Google的Kubeflow团队于2018年底开源了Kubeflow Pipelines(KFP), KFP的设计与Google内部机器学习平台TensorFlow Extended一脉相承,唯一的区别是KFP运行在Kubenretes的平台上,TFX是运行在Borg之上的。

什么是Kubeflow Pipelines

Kubeflow Pipelines平台包括:

  • 能够运行和追踪实验的管理控制台
  • 能够执行多个机器学习步骤的工作流引擎(Argo)
  • 用来自定义工作流的SDK,目前只支持Python

而Kubeflow Pipelines的目标在于:

  • 端到端的任务编排: 支持编排和组织复杂的机器学习工作流,该工作流可以被直接触发,定时触发,也可以由事件触发,甚至可以实现由数据的变化触发
  • 简单的实验管理: 帮助数据科学家尝试众多的想法和框架,以及管理各种试验。并实现从实验到生产的轻松过渡。
  • 通过组件化方便重用: 通过重用Pipelines和组件快速创建端到端解决方案,无需每次从0开始的重新构建。

在阿里云上运行Kubeflow Pipelines

看到Kubeflow Piplines的能力,大家是不是都摩拳擦掌,想一睹为快?但是目前国内想使用Kubeflow Pipeline有两个挑战:
1.Pipelines需要通过Kubeflow部署;而Kubeflow默认组件过多,同时通过Ksonnet部署Kubeflow也是很复杂的事情。 2.Pipelines本身和谷歌云平台有深度耦合,无法在运行其他云平台上或者裸金属服务器的环境。

为了方便国内的用户安装Kubeflow Pipelines,阿里云容器服务团队提供了基于Kustomize的Kubeflow Pipelines部署方案。和普通的Kubeflow基础服务不同,Kubeflow Pipelines需要依赖于mysql和minio这些有状态服务,也就需要考虑如何持久化和备份数据。在本例子中,我们借助阿里云SSD云盘作为数据持久化的方案,分别自动的为mysql和minio创建SSD云盘。

您可以在阿里云上尝试一下单独部署最新版本Kubeflow Pipelines。

前提条件

在Linux和Mac OS环境,可以执行

opsys=linux  # or darwin, or windows
curl -s https://api.github.com/repos/kubernetes-sigs/kustomize/releases/latest |\
  grep browser_download |\
  grep $opsys |\
  cut -d '"' -f 4 |\
  xargs curl -O -L
mv kustomize_*_${opsys}_amd64 /usr/bin/kustomize
chmod u+x /usr/bin/kustomize

在Windows环境,可以下载kustomize_2.0.3_windows_amd64.exe

  • 在阿里云容器服务创建Kubernetes集群, 可以参考 文档

部署过程

1.通过ssh访问Kubernetes集群,具体方式可以参考文档

2.下载源代码

yum install -y git
git clone --recursive https://github.com/aliyunContainerService/kubeflow-aliyun

3.安全配置

3.1 配置TLS证书。如果没有TLS证书,可以通过下列命令生成

yum install -y openssl
domain="pipelines.kubeflow.org"
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout kubeflow-aliyun/overlays/ack-auto-clouddisk/tls.key -out kubeflow-aliyun/overlays/ack-auto-clouddisk/tls.crt -subj "/CN=$domain/O=$domain"

如果您有TLS证书,请分别将私钥和证书保存到kubeflow-aliyun/overlays/ack-auto-clouddisk/tls.keykubeflow-aliyun/overlays/ack-auto-clouddisk/tls.crt

3.2 配置admin的登录密码

yum install -y httpd-tools
htpasswd -c kubeflow-aliyun/overlays/ack-auto-clouddisk/auth admin
New password:
Re-type new password:
Adding password for user admin

4.首先利用kustomize生成部署yaml

cd kubeflow-aliyun/
kustomize build overlays/ack-auto-clouddisk > /tmp/ack-auto-clouddisk.yaml

5.查看所在的Kubernetes集群节点所在的地域和可用区,并且根据其所在节点替换可用区,假设您的集群所在可用区为cn-hangzhou-g,可以执行下列命令

sed -i.bak 's/regionid: cn-beijing/regionid: cn-hangzhou/g' \
    /tmp/ack-auto-clouddisk.yaml

sed -i.bak 's/zoneid: cn-beijing-e/zoneid: cn-hangzhou-g/g' \
    /tmp/ack-auto-clouddisk.yaml

建议您检查一下/tmp/ack-auto-clouddisk.yaml修改是否已经设置

6.将容器镜像地址由gcr.io替换为registry.aliyuncs.com

sed -i.bak 's/gcr.io/registry.aliyuncs.com/g' \
    /tmp/ack-auto-clouddisk.yaml

建议您检查一下/tmp/ack-auto-clouddisk.yaml修改是否已经设置

7.调整使用磁盘空间大小, 比如需要调整磁盘空间为200G

sed -i.bak 's/storage: 100Gi/storage: 200Gi/g' \
    /tmp/ack-auto-clouddisk.yaml

8.验证pipelines的yaml文件

kubectl create --validate=true --dry-run=true -f /tmp/ack-auto-clouddisk.yaml

9.利用kubectl部署pipelines

kubectl create -f /tmp/ack-auto-clouddisk.yaml

10.查看访问pipelines的方式,我们通过ingress暴露pipelines服务,在本例子中,访问ip是112.124.193.271。而Pipelines管理控制台的链接是:https://112.124.193.271/pipeline/

kubectl get ing -n kubeflow
NAME             HOSTS   ADDRESS           PORTS     AGE
ml-pipeline-ui   *       112.124.193.271   80, 443   11m

11.访问pipelines管理控制台

如果使用自签发证书,会提示此链接非私人链接,请点击显示详细信息, 并点击访问此网站。

non_tls

请输入步骤2.2中的用户名admin和设定的密码

auth

这时就可以使用pipelines管理和运行训练任务了。

pipelines

Q&A

1.为什么这里要使用阿里云的SSD云盘?

这是由于阿里云的SSD云盘可以设置定期的自动备份,保证pipelines中的元数据不会丢失。

2.如何进行云盘备份?

如果您想备份云盘的内容,可以为云盘 手动创建快照 或者 为硬盘设置自动快照策略 按时自动创建快照。

3.如何清理Kubeflow Piplines部署?

这里的清理工作分为两个部分:

  • 删除Kubeflow Pipelines的组件
kubectl delete -f /tmp/ack-auto-clouddisk.yaml
  • 通过释放云盘分别释放mysql和minio存储对应的两个云盘

4.如何使用现有云盘作为数据库存储,而避免自动创建云盘?

请参考文档

总结

本文为您初步介绍了Kubeflow Pipelines的背景和其所要解决的问题,以及如何在阿里云上通过Kustomize快速构建一套服务于机器学习的Kubeflow Pipelines,后续我们会分享如何利用Kubeflow Pipelines开发一个完整的机器学习流程。

相关实践学习
巧用云服务器ECS制作节日贺卡
本场景带您体验如何在一台CentOS 7操作系统的ECS实例上,通过搭建web服务器,上传源码到web容器,制作节日贺卡网页。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
1月前
|
人工智能 自然语言处理 安全
通过阿里云Milvus与PAI搭建高效的检索增强对话系统
阿里云向量检索Milvus版是一款全托管的云服务,兼容开源Milvus并支持无缝迁移。它提供大规模AI向量数据的相似性检索服务,具备易用性、可用性、安全性和低成本等优势,适用于多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等场景。用户可通过PAI平台部署RAG系统,创建和配置Milvus实例,并利用Attu工具进行可视化操作,快速开发和部署应用。使用前需确保Milvus实例和PAI在相同地域,并完成相关配置与开通服务。
|
11天前
|
API 开发工具 Python
阿里云PAI部署DeepSeek及调用
本文介绍如何在阿里云PAI EAS上部署DeepSeek模型,涵盖7B模型的部署、SDK和API调用。7B模型只需一张A10显卡,部署时间约10分钟。文章详细展示了模型信息查看、在线调试及通过OpenAI SDK和Python Requests进行调用的步骤,并附有测试结果和参考文档链接。
1760 9
阿里云PAI部署DeepSeek及调用
|
12天前
|
机器学习/深度学习 人工智能 开发者
DeepSeek安装部署指南,基于阿里云PAI零代码,小白也能轻松搞定!
阿里云PAI平台支持零代码一键部署DeepSeek-V3和DeepSeek-R1大模型,用户可轻松实现从训练到部署再到推理的全流程。通过PAI Model Gallery,开发者只需简单几步即可完成模型部署,享受高效便捷的AI开发体验。具体步骤包括:开通PAI服务、进入控制台选择模型、一键部署并获取调用信息。整个过程简单快捷,极大降低了使用门槛。
|
6天前
|
机器学习/深度学习 分布式计算 大数据
阿里云 EMR Serverless Spark 在微财机器学习场景下的应用
面对机器学习场景下的训练瓶颈,微财选择基于阿里云 EMR Serverless Spark 建立数据平台。通过 EMR Serverless Spark,微财突破了单机训练使用的数据规模瓶颈,大幅提升了训练效率,解决了存算分离架构下 Shuffle 稳定性和性能困扰,为智能风控等业务提供了强有力的技术支撑。
|
6天前
|
机器学习/深度学习 人工智能 开发者
DeepSeek服务器繁忙?拒绝稍后再试!基于阿里云PAI实现0代码一键部署DeepSeek-V3和DeepSeek-R1大模型
阿里云PAI平台支持零代码一键部署DeepSeek-V3和DeepSeek-R1大模型,用户可轻松实现从训练到部署再到推理的全流程。通过PAI Model Gallery,开发者只需简单几步即可完成模型部署,享受高效便捷的AI开发体验。具体步骤包括开通PAI服务、进入控制台选择模型、一键部署并获取调用信息。整个过程无需编写代码,极大简化了模型应用的门槛。
119 7
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
1月前
|
SQL 存储 人工智能
DMS+X构建Gen-AI时代的一站式Data+AI平台
本文整理自阿里云数据库团队Analytic DB、PostgreSQL产品及生态工具负责人周文超和龙城的分享,主要介绍Gen-AI时代的一站式Data+AI平台DMS+X。 本次分享的内容主要分为以下几个部分: 1.发布背景介绍 2.DMS重磅发布:OneMeta 3.DMS重磅发布:OneOps 4.DMS+X最佳实践,助力企业客户实现产业智能化升级
DMS+X构建Gen-AI时代的一站式Data+AI平台
|
2月前
|
人工智能 JSON 算法
魔搭支持在阿里云人工智能平台PAI上进行模型训练、部署了!
现在,魔搭上的众多模型支持在阿里云人工智能平台PAI-Model Gallery上使用阿里云算力资源进行模型训练和部署啦!
|
2月前
|
开发者 Python
阿里云PAI DSW快速部署服务
在使用阿里云DSW实例进行开发的时候,可能需要快速部署服务测试应用效果。DSW实例目前已经支持通过自定义服务访问配置功能,对外提供服务访问能力,您在应用开发过程中无需分享整个DSW实例,即可将服务分享给协作开发者进行测试和验证。
119 23
|
1月前
|
并行计算 PyTorch 算法框架/工具
阿里云PAI-部署Qwen2-VL-72B
阿里云PAI-部署Qwen2-VL-72B踩坑实录