CV预备(一): conv2, filter2, imfilter的差别

简介: 目录前言filter2实操conv2imfilter最后前言最近开始准备深入学习一下计算机视觉(CV)方面的内容, 这里会更新几期基础知识, 主要是Matlab和Python方面的.

目录

  • 前言
  • filter2
  • 实操
  • conv2
  • imfilter
  • 最后

前言

最近开始准备深入学习一下计算机视觉(CV)方面的内容, 这里会更新几期基础知识, 主要是Matlab和Python方面的. 这次的就是三个Matlab的函数filter2, conv2, imfilter.


filter2

filter2相关滤波函数, 假设输入图像I大小为M1 X N1,相关核f大小为M2 X N2.

J = filter2 (f, I, shape)
  • f: 相关核, 即滤波掩模
  • I: 输入图像
  • J: 输出图像
  • shape: 可选, 其参数如下:
参数 描述
same(默认值) 返回与I同样尺寸滤波后的图像, M1 X N1
full 返回全部二维滤波结果, (M1 + M2 - 1) X (N1 + N2 - 1)
valid 不考虑边界补零, 即只要有边界补出的零参与运算的都舍去, (M1 - M2 + 1) X (N1 - N2 + 1)

实操

这里实操一下, 首先是'same'

I = [10 10 10 10;
     10 10 10 10;
     10 10 10 10];

f = [1 1 1;
     1 1 1;
     1 1 1];

J = filter2(f, I, 'same')

输出是:

>> iFilter

J =

    40    60    60    40
    60    90    90    60
    40    60    60    40

对输入图像补零, 第一行之前和最后一行之后都补M2 -1行,第一列之前和最后一列之后都补N2 - 1列, (注意filter2和conv2不支持其他的边界补充选项, 函数内部对输入总是补零.

也就是补成如下:

0 0 0  0  0  0  0 0 
0 0 0  0  0  0  0 0 
0 0 10 10 10 10 0 0
0 0 10 10 10 10 0 0
0 0 10 10 10 10 0 0
0 0 0  0  0  0  0 0 
0 0 0  0  0  0  0 0 

相关

所以第一个40就是相关核与红框内部分对应相乘然后结果求和所得, 也就是(0*1 + 0*1 + 0*1 + 0*1 + 10 *1 + 10 *1 + 0*1 + 10 *1 + 10 *1), 之后的就滑动相关核, 将相关核的中心位于图像矩阵的每一个元素.

'full'的话, 就是将边缘补全零的计算结果也一并输出, 所以尺寸是(M1 + M2 - 1) X (N1 + N2 - 1)

J =

    10    20    30    30    20    10
    20    40    60    60    40    20
    30    60    90    90    60    30
    20    40    60    60    40    20
    10    20    30    30    20    10

卷积

最后'valid', 就是边界补出的零参与运算的都舍去.

J =

    90    90

conv2

和filter2最大的不同就是计算之前, 把卷积核旋转180°. 所以, 如果卷积核旋转180°和原来一样, 那么conv2和filter2的计算结果都是一样的. 所以我这里就修改一下算子. 可以很明显看到filter2的结果旋转180°就是conv2的结果.

I = [10 10 10 10;
     10 10 10 10;
     10 10 10 10];

f = [1 1 1;
     1 1 1;
     1 2 1];

J = filter2(f, I, 'same')
J = conv2(I, f, 'same')
J =

    50    70    70    50
    70   100   100    70
    40    60    60    40


J =

    40    60    60    40
    70   100   100    70
    50    70    70    50

imfilter

J = imfilter(I, f, filtering_mode, boundary_options, size_options)
参数列表 选项 描述
filtering_mode ‘corr’ 相关(默认)
‘conv’ 卷积
boundary_options X 输入图像的边界通过用值X值来填充扩展其默认值为0
‘replicate’ 复制外边界值
‘symmetric’ 镜像反射
‘circular’ 图像大小通过将图像看成是一个二维周期函数的一个周期来扩展
size_options ‘full’ 输出图像的大小与被扩展图像的大小相同
‘same’ 输出图像的大小与输入原始输入图像一样(默认)

这样的话, J = imfilter(I, f, 'corr', 0, 'same')J = filter2(f, I, 'same')是等效的.


最后

喜欢记得点赞或者关注哦, 有意见或者建议评论区见~


目录
相关文章
|
计算机视觉
OpenCV-DFT最优尺寸cv::getOptimalDFTSize
OpenCV-DFT最优尺寸cv::getOptimalDFTSize
|
计算机视觉 容器
OpenCV-通道分离cv::split
OpenCV-通道分离cv::split
|
计算机视觉 索引
OpenCV-最值计算cv::minMaxIdx&cv::minMaxLoc
OpenCV-最值计算cv::minMaxIdx&cv::minMaxLoc
211 0
|
计算机视觉
OpenCV-通道合并cv::merge
OpenCV-通道合并cv::merge
154 0
|
1月前
|
算法 计算机视觉
Opencv学习笔记(六):cv2.resize函数的介绍
这篇文章介绍了OpenCV库中cv2.resize函数的使用方法,包括其参数、插值方式选择以及实际代码示例。
267 1
Opencv学习笔记(六):cv2.resize函数的介绍
|
1月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
344 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
3月前
|
存储 计算机视觉
OpenCV 中 CV_8UC1,CV_32FC3,CV_32S等参数的含义
OpenCV 中 CV_8UC1,CV_32FC3,CV_32S等参数的含义
191 3
|
3月前
|
计算机视觉
OpenCV 图像类型标识符 CV_<bit_depth><S|U|F>C<number_of_channels>
OpenCV 图像类型标识符 CV_<bit_depth><S|U|F>C<number_of_channels>
40 0
|
4月前
|
计算机视觉
【YOLOv10改进-卷积Conv】动态蛇形卷积(Dynamic Snake Convolution)用于管状结构分割任务
YOLOv10专栏介绍了一种用于精确分割管状结构的新方法DSCNet,它结合了动态蛇形卷积、多视角融合和拓扑连续性约束损失。DSConv创新地聚焦细长局部结构,增强管状特征感知,而多视角融合和TCLoss则改善了全局形态理解和分割连续性。在2D和3D数据集上的实验显示,DSCNet在血管和道路等分割任务上超越了传统方法。DySnakeConv模块整合到YOLOv10中,提升了目标检测的准确性。[链接指向详细文章](https://blog.csdn.net/shangyanaf/article/details/140007047)
|
5月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 卷积模块 | 用坐标卷积CoordConv替换Conv
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡