构建大数据网络 需要重视这五个地方

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 在人们考虑大数据时,人们留意到了“大”这一个字,可是在投建基础架构时,人们还应当留意“分布式”。实际上,大数据的应用程序需要处理大量信息,并且在出自弹性的考虑将数据拷贝到多个部位时,信息的规模变得越来越大。

在人们考虑大数据时,人们留意到了“大”这一个字,可是在投建基础架构时,人们还应当留意“分布式”。

实际上,大数据的应用程序需要处理大量信息,并且在出自弹性的考虑将数据拷贝到多个部位时,信息的规模变得越来越大。可是,大数据的最关键属性并非在于它的规模,而在于它将大作业切分成很多小作业的能力,它才能将解决一两个任务的资源细化到好几个位置变成并行处理。

在将大规模和分布式架构组合合为一体时,人们就能发觉大数据网络有一组独特的需求。下边是需要考量的五个层面:

1.网络弹性与大数据的应用程序

假如有一组分布式资源必需通过互联网络开展协调时,可用性就显得尤为重要。假如互联网出现故障,那样导致的不良影响是出现不持续的坏计算资源与数据集。

精确地说,大部分网络结构和工程师的首要侧重点是正常运作时间。可是,网络问题时间的根本原因又不尽相同。他们或者来源于于各个领域,包含机械故障(硬件与软件)、维系和人为错误。故障是无法避免的。尽管网络的高度可用性也很关键,可是想要设计极致可用性是不可能的。

网络架构师不能用故障来躲避目的,而应当设计某些能适应故障的弹性网络。网络的弹性在于路径多样性(资源之间设置多条路径)和故障转移(可以迅速察觉问题和迁移到其他路径上)。除开传统的平均故障时间间隔(MTBF)方法,大数据网络的真正设计标准必须要包括这些性能。

2.处理大数据的应用中的网络拥塞问题

大数据的应用程序不但是规模大,并且也有一种我称之为突发性的特性。当一个作业启动之后,数据就开始调拨。在高流量时间段里,拥塞是一个严重的问题。殊不知,拥塞将会造成更多的队列时间延迟和丢包率。除此之外,拥塞还将会触发重转,这可能让实际上负荷艰巨的互联网没法承受。因而,网络架构设计时应当尽可能减少拥塞点。按照可用性的设计标准,降低拥塞要求网络具有较高的路径多样性,这样才能容许网络将流量分离到很多不一的路径上。

3.大数据中网络一致性要比迟延性更关键

事实上,大部分大数据应用程序对网络延迟不太敏感。假如计算时间的数量级为几秒钟或几分钟,那样即便网络上出现较大延时也是无所谓的——数量级大约为几千毫秒。殊不知,大数据应用程序通常具备较高的同步性。这代表着作业是并行执行的,而各个作业之间较大的性能差异或者会引起程序运行的故障。为此,网络不但要足够高效,并且要在时间与空间上具备相同的性能。

4.目前就要准备大数据将来的可伸缩性

或者令人有点意外的是,大部分大数据集群事实上并不大。或者说,即便每台服务器配置双向冗余,适用全部集群也只需要四个接入交换机(假定是分別有72个10GbE浏览端口的Broadcom交换机)。

可伸缩性并非在于现如今集群目前有多规模性,而是说怎样均衡地拓展支持将来的部署规模。假如基础架构设计目前只合适小规模部署,那样这个架构将怎样随之节点数目的增多而持续进化?在未来某一个时刻,它是不是需要完全重新设计架构?这个架构是不是必须某些短程数据和数据位置信息?重要是要记住,可伸缩性并非取决于绝对规模,而是更关注于实现足够规模解决方案的路径。

5.利用网络分割来处理大数据

网络分割是创建大数据环境的关键条件。在非常简单的形式上,分割将会暗示着要将大数据流量与其余网络流量分离,这样应用程序形成的突发流量才不易影响别的核心任务工作负荷。此外,人们还需要解决运行多个作业的多个租户,以考虑性能、合规性和/或审计的需求。这些工作要求在一些场合中实现网络负荷的逻辑分离,某些场所则还要实现它们的物理分离。架构师必须同时在两个层面上开展规划,可是原始需求最好统一在一起。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
12天前
|
20天前
|
存储 安全 算法
网络安全与信息安全:构建安全数字生活的基石
【10月更文挑战第5天】 在数字化时代,网络安全与信息安全已成为维护个人隐私、企业机密和国家安全的重要防线。本文旨在探讨网络安全漏洞的形成与防范、加密技术的应用及其重要性,以及提升公众安全意识的必要性。通过深入浅出的方式,帮助读者理解网络安全的核心要素,并强调每个人都是网络安全生态中不可或缺的一环。
45 1
|
21天前
|
搜索推荐 程序员 调度
精通Python异步编程:利用Asyncio与Aiohttp构建高效网络应用
【10月更文挑战第5天】随着互联网技术的快速发展,用户对于网络应用的响应速度和服务质量提出了越来越高的要求。为了构建能够处理高并发请求、提供快速响应时间的应用程序,开发者们需要掌握高效的编程技术和框架。在Python语言中,`asyncio` 和 `aiohttp` 是两个非常强大的库,它们可以帮助我们编写出既简洁又高效的异步网络应用。
98 1
|
9天前
|
安全 网络架构
MPLS线路构建稳定、高效网络的优选方案
【10月更文挑战第17天】MPLS线路构建稳定、高效网络的优选方案
33 5
|
21天前
|
消息中间件 分布式计算 大数据
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
47 5
|
21天前
|
存储 SQL 分布式计算
大数据-162 Apache Kylin 全量增量Cube的构建 Segment 超详细记录 多图
大数据-162 Apache Kylin 全量增量Cube的构建 Segment 超详细记录 多图
40 3
|
7天前
|
运维 供应链 安全
SD-WAN分布式组网:构建高效、灵活的企业网络架构
本文介绍了SD-WAN(软件定义广域网)在企业分布式组网中的应用,强调其智能化流量管理、简化的网络部署、弹性扩展能力和增强的安全性等核心优势,以及在跨国企业、多云环境、零售连锁和制造业中的典型应用场景。通过合理设计网络架构、选择合适的网络连接类型、优化应用流量优先级和定期评估网络性能等最佳实践,SD-WAN助力企业实现高效、稳定的业务连接,加速数字化转型。
SD-WAN分布式组网:构建高效、灵活的企业网络架构
|
21天前
|
Java 大数据 数据库连接
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
24 2
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
|
1天前
|
数据采集 存储 机器学习/深度学习
构建高效的Python网络爬虫
【10月更文挑战第25天】本文将引导你通过Python编程语言实现一个高效网络爬虫。我们将从基础的爬虫概念出发,逐步讲解如何利用Python强大的库和框架来爬取、解析网页数据,以及存储和管理这些数据。文章旨在为初学者提供一个清晰的爬虫开发路径,同时为有经验的开发者提供一些高级技巧。
5 1
|
12天前
|
消息中间件 监控 网络协议
Python中的Socket魔法:如何利用socket模块构建强大的网络通信
本文介绍了Python的`socket`模块,讲解了其基本概念、语法和使用方法。通过简单的TCP服务器和客户端示例,展示了如何创建、绑定、监听、接受连接及发送/接收数据。进一步探讨了多用户聊天室的实现,并介绍了非阻塞IO和多路复用技术以提高并发处理能力。最后,讨论了`socket`模块在现代网络编程中的应用及其与其他通信方式的关系。