复旦大学邱锡鹏教授发布《神经网络与深度学习》教材,配备代码和章节练习

简介: 广受好评的学习资源

雷锋网(公众号:雷锋网) AI 科技评论按,近日,复旦大学计算机科学学院副教授邱锡鹏发布了一本《神经网络与深度学习》教材,这份学习资源一经发布就广受好评。目前,该资源在 github 上已经斩获 5000+ star。

TB1flBcRhnaK1RjSZFtXXbC2VXa.png

2015 年,复旦大学计算机学院开设了《神经网络与深度学习》课程。由于当时还没有关于深度学习的系统介绍,为了给同学们讲好这门课,邱教授自己梳理了深度学习的相关知识,整理成一本讲义,这本讲义经过后来的修改补充,变成了我们现在看到的《神经网络与深度学习》教材。

目前,这本书分为 16 个章节,主要内容是神经网络与深度学习中的基础知识、主要模型(前馈网络、卷积网络、循环网络等)以及在计算机视觉、自然语言处理等领域的应用。雷锋网雷锋网

具体章节内容如下:

绪论 [ppt] (updated 2019-4-4)

机器学习概述 [ppt] (updated 2019-4-4)

线性模型 [ppt] (updated 2019-4-4)

前馈神经网络 [ppt] (updated 2019-4-4)

卷积神经网络 [ppt] (updated 2019-4-4)

循环神经网络 [ppt] (updated 2019-4-4)

网络优化与正则化 [ppt] (updated 2019-4-4)

注意力机制与外部记忆 [ppt] (updated 2019-4-4)

无监督学习 [ppt] (updated 2019-4-4)

模型独立的学习方式 (updated 2019-4-4)

概率图模型 [ppt] (updated 2019-4-4)

深度信念网络 [ppt] (updated 2019-4-4)

深生成模型 [ppt] (updated 2019-4-4)

深度强化学习 [ppt] (updated 2019-4-4)

序列生成模型 (updated 2019-4-4) 一个过时版本:词嵌入与语言模型

数学基础 (updated 2019-4-4)

为了方便同学们学习,邱教授不仅在 github 上面提供了这本书的 PDF 版本文件,还提供了介绍课程主要内容的 PPT 和 PDF 文档。

TB1E.sDQ6DpK1RjSZFrXXa78VXa.png

不仅如此,本书还配套了详尽的示例代码。对应于书籍中的每个章节,邱老师和精心设计了课程练习题,帮助同学们更好的理解和掌握相关章节的知识。雷锋网雷锋网

下面附上本书相关的资源链接:

github 资源:https://github.com/nndl/nndl.github.io

示例代码:https://github.com/nndl/nndl-codes

课程练习:https://github.com/nndl/exercise

接下来,让我们来预览下这本书的部分内容吧~

TB1fF._Q5LaK1RjSZFxXXamPFXa.jpg TB16a8Lee3tHKVjSZSgXXX4QFXa.jpg

课程练习题:

TB1lYMNQ7voK1RjSZFDXXXY3pXa.png TB1JG3QQYrpK1RjSZTEXXcWAVXa.png TB1I5MVQ3HqK1RjSZFkXXX.WFXa.png

雷锋网版权文章,未经授权禁止转载。详情见转载须知。

目录
相关文章
|
1月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
197 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
30 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
27天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
90 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
3月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
238 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
148 10
|
3月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
129 3
|
4月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
132 8
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
504 7
|
4月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
168 1

热门文章

最新文章