书籍:机器学习和图像处理实战 Practical Machine Learning and Image Processing - 2019.pdf

简介: 简介 使用Python中的机器学习和神经网络,深入了解图像处理方法和算法。本书从环境设置开始,理解基本的图像处理术语,并探索对实现本书中讨论的算法有用的Python概念。然后,您将详细介绍所有核心图像处理算法,然后再转到最大的计算机视觉库:OpenCV。

简介

图片.png

使用Python中的机器学习和神经网络,深入了解图像处理方法和算法。本书从环境设置开始,理解基本的图像处理术语,并探索对实现本书中讨论的算法有用的Python概念。然后,您将详细介绍所有核心图像处理算法,然后再转到最大的计算机视觉库:OpenCV。您将看到OpenCV算法以及如何将它们用于图像处理。

下一节将介绍用于图像处理和分类的高级机器学习和深度学习方法。您将使用脉冲耦合神经网络,AdaBoost,XG增强和卷积神经网络等概念来处理图像特定应用。稍后您将探索如何实时制作模型,然后使用各种DevOps工具进行部署。

实际机器学习和图像处理中的所有概念都是使用现实场景解释的。阅读本书后,您将能够应用图像处理技术,并为自定义应用程序制作机器学习模型。

参考资料

你会学到什么

  • 使用Python发现图像处理算法及其应用程序
  • 使用OpenCV库探索图像处理
  • 使用TensorFlow,scikit-learn,NumPy和其他库
  • 使用机器学习和深度学习算法进行图像处理
  • 将图像处理技术应用于五个实时项目

本书对象

对图像处理和计算机视觉感兴趣数据科学家和软件开发人员

目录
打赏
0
0
0
0
971
分享
相关文章
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
R1类模型推理能力评测手把手实战
R1类模型推理能力评测手把手实战
基于阿里云 Milvus + DeepSeek + PAI LangStudio 的低成本高精度 RAG 实战
阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,Milvus云服务成为多样化AI应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的Attu工具进行可视化操作,进一步促进应用的快速开发和部署。
R1类模型推理能力评测手把手实战
随着DeepSeek-R1模型的广泛应用,越来越多的开发者开始尝试复现类似的模型,以提升其推理能力。
166 2
R1类模型推理能力评测手把手实战
随着DeepSeek-R1模型的广泛应用,越来越多的开发者开始尝试复现类似的模型,以提升其推理能力。
224 3
机器学习中的图像处理与计算机视觉
在现代计算机科学中,图像处理和计算机视觉已成为最活跃的研究领域之一,这得益于机器学习和深度学习的发展。本文将深入探讨图像处理与计算机视觉的基础概念、常见应用、关键技术、常用工具,以及在这些领域中的代码示例。通过本篇文章,我们将了解如何从头开始构建一个简单的计算机视觉系统,并探索这些技术背后的原理。
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
191 3
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
132 5

热门文章

最新文章