python实现二叉树数据结构的多种遍历方式

简介: 二叉树的遍历比较有意思,首先是遍历的方式比较多,大的来说分为深度遍历和广度遍历,深度遍历又分为先序遍历/中序遍历/后序遍历,其中深度遍历用递归来实现,广度遍历用队列来实现。深度遍历和广度遍历是相对的概念,深度遍历是沿着树的深度遍历树的节点,尽可能深的搜索树的分支;广度遍历是从树的根层级开始一层一...

二叉树的遍历比较有意思,首先是遍历的方式比较多,大的来说分为深度遍历和广度遍历,深度遍历又分为先序遍历/中序遍历/后序遍历,其中深度遍历用递归来实现,广度遍历用队列来实现。

深度遍历和广度遍历是相对的概念,深度遍历是沿着树的深度遍历树的节点,尽可能深的搜索树的分支;广度遍历是从树的根层级开始一层一层的遍历,遍历完上一层再遍历下一层;如下:

深度遍历顺序:0-1-3-7-8-4-9-2-5-6(先序遍历)

广度遍历顺序:0-1-2-3-4-5-6-7-8-9


但对于深度遍历而言还有三种方式:先序遍历/中序遍历/后序遍历;先序遍历的顺序为:根节点->左子树->右子树;中序遍历为:左子树->根节点->右子树;当然后序遍历是:左子树->右子树->根节点;其中的序指的是根节点相对于左右节点的遍历位置。

在上二叉树中我们按照深度遍历的三种方式得到的顺序如下:

先序遍历:0-1-3-7-8-4-9-2-5-6

中序遍历:7-3-8-1-9-4-0-5-2-6

后序遍历:7-8-3-9-4-1-5-6-2-0

注意:先序遍历是从上往下看,中序遍历和后续遍历是从下往上看,从哪里开始就决定了什么相对简单二叉树的权重。

深度遍历的实现:

class Node:
    """节点类"""
    def __init__(self, elem, lchild=None, rchild=None):
        self.elem = elem
        self.lchild = lchild
        self.rchild = rchild


class Tree:
    """树类"""
    def __init__(self, root=None):
        self._root = root

    def add(self, item):
        node = Node(item)
        if not self._root:
            self._root = node
            return
        queue = [self._root]
        while queue:
            cur = queue.pop(0)
            if not cur.lchild:
                cur.lchild = node
                return
            elif not cur.rchild:
                cur.rchild = node
                return
            else:
                queue.append(cur.rchild)
                queue.append(cur.lchild)

    def preorder(self, root):
        """
        先序遍历-递归实现
        :param root:
        :return:
        """

        if not root:
            raise ValueError("ROOT ERROR")
        print(root.elem)
        self.preorder(root.lchild)
        self.preorder(root.rchild)

    def inorder(self, root):
        """
        中序遍历-递归实现
        :param root:
        :return:
        """

        if not root:
            raise ValueError("ROOT ERROR")
        self.inorder(root.lchild)
        print(root.elem)
        self.inorder(root.rchild)

    def postorder(self, root):
        """
        后序遍历-递归实现
        :param root: 
        :return: 
        """

        if not root:
            raise ValueError("ROOT ERROR")
        self.postorder(root.lchild)
        self.postorder(root.rchild)
        print(root.elem)


广度遍历的实现;

class Node:
    """节点类"""
    def __init__(self, elem, lchild=None, rchild=None):
        self.elem = elem
        self.lchild = lchild
        self.rchild = rchild


class Tree:
    """树类"""
    def __init__(self, root=None):
        self._root = root

    def breadth_travel(self, root):
        """
        广度优先-队列实现
        :param root:
        :return:
        """

        if not root:
            raise ValueError("ROOT ERROR")
        queue = [root]
        while queue:
            node = queue.pop(0)
            print(node.elem)
            if node.lchild:
                queue.append(node.lchild)
            elif node.rchild:
                queue.append(node.rchild)


递归函数使得二叉树的遍历操作更加的简洁,上面的深度遍历的三种方式除了递归以外,还可以使用堆栈的结构来实现,如果感兴趣可自行实现。

相关文章
|
5天前
|
算法 定位技术 Python
震惊!Python 图结构竟然可以这样玩?DFS&BFS 遍历技巧大公开
在 Python 编程中,图是一种重要的数据结构,而深度优先搜索(DFS)和广度优先搜索(BFS)是遍历图的两种关键算法。本文将通过定义图的数据结构、实现 DFS 和 BFS 算法,并通过具体示例展示其应用,帮助读者深入理解这两种算法。DFS 适用于寻找路径和检查图连通性,而 BFS 适用于寻找最短路径。掌握这些技巧,可以更高效地解决与图相关的复杂问题。
17 2
|
9天前
|
Python
不容错过!Python中图的精妙表示与高效遍历策略,提升你的编程艺术感
本文介绍了Python中图的表示方法及遍历策略。图可通过邻接表或邻接矩阵表示,前者节省空间适合稀疏图,后者便于检查连接但占用更多空间。文章详细展示了邻接表和邻接矩阵的实现,并讲解了深度优先搜索(DFS)和广度优先搜索(BFS)的遍历方法,帮助读者掌握图的基本操作和应用技巧。
27 4
|
14天前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
63 8
|
10天前
|
算法 Python
Python图论探索:从理论到实践,DFS与BFS遍历技巧让你秒变技术大牛
图论在数据结构与算法中占据重要地位,应用广泛。本文通过Python代码实现深度优先搜索(DFS)和广度优先搜索(BFS),帮助读者掌握图的遍历技巧。DFS沿路径深入搜索,BFS逐层向外扩展,两者各具优势。掌握这些技巧,为解决复杂问题打下坚实基础。
23 2
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
19 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
20 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
1月前
|
存储 索引 Python
python数据结构之列表详解
列表是Python中极为灵活和强大的数据结构,适合于存储和操作有序数据集合。掌握其基本操作和高级特性对于编写高效、清晰的Python代码至关重要。通过本回答,希望能帮助你全面理解Python列表的使用方法,从而在实际编程中更加游刃有余。
21 0
|
1月前
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆
|
1月前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
24 0
|
15天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
90 9