PAI实现的深度学习网络可视化编辑功能-FastNeuralNetwork

简介: 在深度学习领域流传着这样一句话,“一张好的表示图,胜过一千个公式” 本文会介绍如何通过PAI-DSW中的FastNerualNetwork功能实现深度学习网络的可视化编辑。 神经网络最早诞生于生物领域,用来模仿生物大脑复杂的神经元构成,后来人类为了探索大脑是如何思考,通过一层一层的数学公式来模拟大脑分析事物的过程。
在深度学习领域流传着这样一句话,“一张好的表示图,胜过一千个公式”
本文会介绍如何通过PAI-DSW中的FastNeuralNetwork功能实现深度学习网络的可视化编辑。

PAI产品入口:https://data.aliyun.com/product/learn
神经网络最早诞生于生物领域,用来模仿生物大脑复杂的神经元构成,后来人类为了探索大脑是如何思考,通过一层一层的数学公式来模拟大脑分析事物的过程。再后来就有了深度学习框架,人们可以通过代码去构建深度学习网络,复杂的深度学习网络通常由几十行甚至几百行代码构成,每一层网络又由许多参数组成,如下图:

当层数增多,通过代码去构建深度学习网络变的困难,并且难以维护和调整。FastNeuralNetwork功能可以将深度学习构图代码一键式转化成网络架构图,并且可以实现可视化编辑,大大增强了模型解读性和可维护性,如下图:

下面就介绍下如何使用FastNeuralNetwork功能。

功能介绍

1.创建

进入DSW,目前只有KerasCode和KerasGraph两个Kernel实现了FastNeuralNetwork功能。

  • KerasCode:先写深度学习网络代码,然后将代码转成图
  • KerasGraph:直接通过画布构建深度学习网络,并且将图转成代码

也可以通过左侧Demo列表提供的官方代码FNNDemo直接使用。

2.Magic Command介绍

打开Keras Code功能进入交互式开发页面,先通过代码构建深度学习网络。如以下示例代码:

import keras
from keras.models import Model
from keras.models import Sequential
from keras.layers import Conv2D, Dense, MaxPooling2D, Flatten, Dropout
from keras.initializers import VarianceScaling, Zeros

model = Sequential()
model.add(MaxPooling2D(padding='valid', data_format='channels_last', pool_size=(2, 2), strides=(2, 2), trainable=True))
model.add(Conv2D(dilation_rate=(1, 1), padding='valid', data_format='channels_last', bias_initializer=Zeros(), use_bias=True, filters=64, strides=(1, 1), trainable=True, kernel_initializer=VarianceScaling(mode='fan_avg', seed=None, scale=1.0, distribution='uniform'), activation='relu', kernel_size=(3, 3)))
model.add(MaxPooling2D(padding='valid', data_format='channels_last', pool_size=(2, 2), strides=(2, 2), trainable=True))
model.add(Dropout(rate=0.25, trainable=True))
model.add(Flatten(data_format='channels_last', trainable=True))
model.add(Dense(bias_initializer=Zeros(), use_bias=True, units=128, trainable=True, kernel_initializer=VarianceScaling(mode='fan_avg', seed=None, scale=1.0, distribution='uniform'), activation='relu'))
model.add(Dropout(rate=0.4, trainable=True))
model.add(Dropout(rate=0.2))

代码中构建了一个Sequential模型,模型对象是model,可以通过输入Magic Command 将代码转化成图

%show_model model

点击图片进入画图编辑界面:

3.编辑网络

FNN功能实现了Keras的原生Cell向画布拖拽并且编辑的功能,画布分为Cell列表区,画布编辑区和参数配置区。

相同作用的Cell会自动编排成组:

画布中的组件会跟代码做自动映射:

4.代码保存

点击To Code按钮弹窗,提示通过画布的修改会导致代码有哪些变化:

点击ok,即可在原有代码文件中生成新的模型构建代码。

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
6月前
|
机器学习/深度学习 人工智能 运维
网管不再抓头发:深度学习教你提前发现网络事故
网管不再抓头发:深度学习教你提前发现网络事故
182 2
|
2月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
5月前
|
机器学习/深度学习 人工智能 算法
Wi-Fi老是卡?不如试试让“深度学习”来当网络管家!
Wi-Fi老是卡?不如试试让“深度学习”来当网络管家!
298 68
|
11月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
582 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
4月前
|
机器学习/深度学习 算法 数据库
基于GoogleNet深度学习网络和GEI步态能量提取的步态识别算法matlab仿真,数据库采用CASIA库
本项目基于GoogleNet深度学习网络与GEI步态能量图提取技术,实现高精度步态识别。采用CASI库训练模型,结合Inception模块多尺度特征提取与GEI图像能量整合,提升识别稳定性与准确率,适用于智能安防、身份验证等领域。
|
10月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
550 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
8月前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
335 8
|
9月前
|
机器学习/深度学习 数据采集 算法
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
|
9月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
569 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
10月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
1089 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能

相关产品

  • 人工智能平台 PAI