PAI实现的深度学习网络可视化编辑功能-FastNeuralNetwork

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 在深度学习领域流传着这样一句话,“一张好的表示图,胜过一千个公式” 本文会介绍如何通过PAI-DSW中的FastNerualNetwork功能实现深度学习网络的可视化编辑。 神经网络最早诞生于生物领域,用来模仿生物大脑复杂的神经元构成,后来人类为了探索大脑是如何思考,通过一层一层的数学公式来模拟大脑分析事物的过程。
在深度学习领域流传着这样一句话,“一张好的表示图,胜过一千个公式”
本文会介绍如何通过PAI-DSW中的FastNeuralNetwork功能实现深度学习网络的可视化编辑。

PAI产品入口:https://data.aliyun.com/product/learn
神经网络最早诞生于生物领域,用来模仿生物大脑复杂的神经元构成,后来人类为了探索大脑是如何思考,通过一层一层的数学公式来模拟大脑分析事物的过程。再后来就有了深度学习框架,人们可以通过代码去构建深度学习网络,复杂的深度学习网络通常由几十行甚至几百行代码构成,每一层网络又由许多参数组成,如下图:

当层数增多,通过代码去构建深度学习网络变的困难,并且难以维护和调整。FastNeuralNetwork功能可以将深度学习构图代码一键式转化成网络架构图,并且可以实现可视化编辑,大大增强了模型解读性和可维护性,如下图:

下面就介绍下如何使用FastNeuralNetwork功能。

功能介绍

1.创建

进入DSW,目前只有KerasCode和KerasGraph两个Kernel实现了FastNeuralNetwork功能。

  • KerasCode:先写深度学习网络代码,然后将代码转成图
  • KerasGraph:直接通过画布构建深度学习网络,并且将图转成代码

也可以通过左侧Demo列表提供的官方代码FNNDemo直接使用。

2.Magic Command介绍

打开Keras Code功能进入交互式开发页面,先通过代码构建深度学习网络。如以下示例代码:

import keras
from keras.models import Model
from keras.models import Sequential
from keras.layers import Conv2D, Dense, MaxPooling2D, Flatten, Dropout
from keras.initializers import VarianceScaling, Zeros

model = Sequential()
model.add(MaxPooling2D(padding='valid', data_format='channels_last', pool_size=(2, 2), strides=(2, 2), trainable=True))
model.add(Conv2D(dilation_rate=(1, 1), padding='valid', data_format='channels_last', bias_initializer=Zeros(), use_bias=True, filters=64, strides=(1, 1), trainable=True, kernel_initializer=VarianceScaling(mode='fan_avg', seed=None, scale=1.0, distribution='uniform'), activation='relu', kernel_size=(3, 3)))
model.add(MaxPooling2D(padding='valid', data_format='channels_last', pool_size=(2, 2), strides=(2, 2), trainable=True))
model.add(Dropout(rate=0.25, trainable=True))
model.add(Flatten(data_format='channels_last', trainable=True))
model.add(Dense(bias_initializer=Zeros(), use_bias=True, units=128, trainable=True, kernel_initializer=VarianceScaling(mode='fan_avg', seed=None, scale=1.0, distribution='uniform'), activation='relu'))
model.add(Dropout(rate=0.4, trainable=True))
model.add(Dropout(rate=0.2))

代码中构建了一个Sequential模型,模型对象是model,可以通过输入Magic Command 将代码转化成图

%show_model model

点击图片进入画图编辑界面:

3.编辑网络

FNN功能实现了Keras的原生Cell向画布拖拽并且编辑的功能,画布分为Cell列表区,画布编辑区和参数配置区。

相同作用的Cell会自动编排成组:

画布中的组件会跟代码做自动映射:

4.代码保存

点击To Code按钮弹窗,提示通过画布的修改会导致代码有哪些变化:

点击ok,即可在原有代码文件中生成新的模型构建代码。

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
机器学习/深度学习 数据可视化 算法
机器学习-可解释性机器学习:随机森林与fastshap的可视化模型解析
机器学习-可解释性机器学习:随机森林与fastshap的可视化模型解析
1428 1
|
机器学习/深度学习 存储 算法
深度学习500问——Chapter02:机器学习基础(4)
深度学习500问——Chapter02:机器学习基础(4)
180 0
|
机器学习/深度学习 存储 人工智能
提升深度学习性能的利器—全面解析PAI-TorchAcc的优化技术与应用场景
在当今深度学习的快速发展中,模型训练和推理的效率变得尤为重要。为了应对计算需求不断增长的挑战,AI加速引擎应运而生。其中,PAI-TorchAcc作为一个新兴的加速引擎,旨在提升PyTorch框架下的计算性能。本文将详细介绍PAI-TorchAcc的基本概念、主要特性,并通过代码实例展示其性能优势。
18523 166
|
机器学习/深度学习 自然语言处理 计算机视觉
深度学习之文本引导的图像编辑
基于深度学习的文本引导的图像编辑(Text-Guided Image Editing)是一种通过自然语言文本指令对图像进行编辑或修改的技术。
272 9
|
网络协议 Linux 开发工具
配置Linux固定IP地址,为什么要固定IP,因为他是通DHCP服务获取的,DHCP服务每次重启都会重新获取一次ip,VMware编辑中有一个虚拟网络编辑器
配置Linux固定IP地址,为什么要固定IP,因为他是通DHCP服务获取的,DHCP服务每次重启都会重新获取一次ip,VMware编辑中有一个虚拟网络编辑器
|
机器学习/深度学习 PyTorch TensorFlow
PAI DLC与其他深度学习框架如TensorFlow或PyTorch的异同
PAI DLC与其他深度学习框架如TensorFlow或PyTorch的异同
|
机器学习/深度学习 算法 大数据
深度学习500问——Chapter02:机器学习基础(1)
深度学习500问——Chapter02:机器学习基础(1)
229 1
深度学习500问——Chapter02:机器学习基础(1)
|
机器学习/深度学习 API Apache
机器学习PAI常见问题之本地运行深度学习训练和预测的测试代码时报错如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
机器学习/深度学习 算法 数据库
【功能超全】基于OpenCV车牌识别停车场管理系统软件开发【含python源码+PyqtUI界面+功能详解】-车牌识别python 深度学习实战项目
【功能超全】基于OpenCV车牌识别停车场管理系统软件开发【含python源码+PyqtUI界面+功能详解】-车牌识别python 深度学习实战项目
|
机器学习/深度学习 算法 流计算
机器学习PAI常见问题之编译包下载不了如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。

相关产品

  • 人工智能平台 PAI