利用Spark解析Tomcat日志,并将统计结果存入Mysql数据库

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云解析 DNS,旗舰版 1个月
简介: 本文试图实现的需求场景为:以学习Spark知识点为目的,编写Scala利用Spark解析800M的tomcat日志文件,打印一段时间内ERROR级别记录的前10行,统计每分钟的日志记录数,并将统计结果存入mysql数据库中。之前曾用JAVA写过一次同样的处理逻辑,但在学习了Scala之后,真的感觉在计算方面Scala要比JAVA方便的多。没有学习Scala语言的同学速度速度了啊……

本文试图实现的需求场景为:以学习Spark知识点为目的,编写Scala利用Spark解析800M的tomcat日志文件,打印一段时间内ERROR级别记录的前10行,统计每分钟的日志记录数,并将统计结果存入mysql数据库中。之前曾用JAVA写过一次同样的处理逻辑,但在学习了Scala之后,真的感觉在计算方面Scala要比JAVA方便的多。没有学习Scala语言的同学速度速度了啊……

技术要点

  • 将日志文件写入HDFS中,相对路径PATH为“nova.log”
  • 注意JAVA堆栈异常日志的处理
  • 将解析后的异常日志全部存到SparkSQL中或Hive数据仓库中
  • 通过编写SQL查询一段时间内ERROR级别记录的前10行
  • 统计每分钟的日志记录数,并将统计结果存入mysql数据库中,便于上层应用直接使用计算结果

解析前后对比

解析前:

解析后:

解析代码

LoggerApp.scala:

import java.text.SimpleDateFormat
import java.util.Date

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.rdd.RDD.rddToPairRDDFunctions
import org.apache.spark.sql.Row
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.TimestampType

/**
 * 日志解析
 */
object LoggerApp {
  def main(args: Array[String]): Unit = {
    println("<!--开始解析-->")
    val reg = "^(\\d{4}-\\d{2}-\\d{2} \\d{2}:\\d{2}:\\d{2}.\\d{3}) (\\[.*\\]) (.*) (.*) - ([\\s\\S]*)$"
    val path = "nova.log"
    val sc = new SparkContext(new SparkConf().setAppName("日志解析"))
    val textRDD = sc.textFile(path)

    /**
     * 处理一条日志包括多行的情况
     */
    var key = ""
    val formatRDD = textRDD.map { x =>
      if (x.matches(reg)) {
        key = x
        Pair.apply(key, "")
      } else {
        Pair.apply(key, x)
      }
    }.reduceByKey((a, b) => { a + "\n" + b }).map(x => x._1 + x._2)

    /**
     * 将字符串转换为Logger
     */
    val loggerRDD: RDD[Logger] = formatRDD.map { x =>
      {
        val reg.r(time, thread, level, logger, msg) = x //通过正则取值
        val log = new Logger(formatDate(time), thread, level, logger, msg)
        log
      }
    }.cache()

    /**
     * TODO 通过类的反射机制来定义数据库Scheme,但在scala语言中不知道为啥就是不成功,此处浪费了许久留着以后研究吧
     */
    /*val sqlc = new SQLContext(sc)
    sqlc.createDataFrame(loggerRDD, classOf[Logger]).registerTempTable("logger")*/

    /**
     * 定义数据库Scheme
     */
    val schemaString = "time thread level logger msg"
    val schema =
      StructType(
        schemaString.split(" ").map(fieldName =>
          if ("time".equals(fieldName))
            StructField(fieldName, TimestampType, true)
          else
            StructField(fieldName, StringType, true)))
    /**
     * 将Logger转换为Row
     */
    val rowRDD = loggerRDD.map { log =>
      Row(
        formatDate(log.time),
        log.thread,
        log.level,
        log.logger,
        log.msg)
    }
    /**
     * 利用SQL进行查询过滤
     */
    //    val sqlc = bySQLContext(sc, rowRDD, schema);
    val sqlc = byHiveContext(sc, rowRDD, schema);
    val df = sqlc.sql("select * from logger where level='ERROR' and time between '2016-03-21 11:00:00' and '2016-03-21 12:00:00' order by time")
    val errLogRDD = df.map { x =>
      new Logger(
        formatDate(x.getTimestamp(0)),
        x.getString(1),
        x.getString(2),
        x.getString(3),
        x.getString(4))
    }
    for (log <- errLogRDD.take(10)) {
      println("time:" + formatDateToStr(log.time))
      println("thread:" + log.thread)
      println("level:" + log.level)
      println("logger:" + log.logger)
      println("msg:" + log.msg)
    }
    println("<!--解析结束-->")
  }
  /**
   * 创建临时表
   */
  def bySQLContext(sc: SparkContext, rowRDD: RDD[Row], schema: StructType): SQLContext = {
    val sqlc = new SQLContext(sc)
    sqlc.createDataFrame(rowRDD, schema).registerTempTable("logger")
    sqlc
  }
  /**
   * 创建永久表,需要提前搭建好Spark与Hive的集成环境
   */
  def byHiveContext(sc: SparkContext, rowRDD: RDD[Row], schema: StructType): SQLContext = {
    val sqlc = new HiveContext(sc)
    sqlc.sql("drop table if exists logger")
    sqlc.sql("CREATE TABLE IF NOT EXISTS logger (time TIMESTAMP, thread STRING, level STRING, logger STRING, msg STRING)")
    sqlc.createDataFrame(rowRDD, schema).write.mode("overwrite").saveAsTable("logger")
    sqlc
  }
  def formatDate(str: String): Date = {
    new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS").parse(str)
  }
  def formatDate(timestamp: java.sql.Timestamp): Date = {
    new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS").parse(timestamp.toString())
  }
  def formatDate(date: Date): java.sql.Timestamp = {
    new java.sql.Timestamp(date.getTime)
  }
  def formatDateToStr(date: Date): String = {
    new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS").format(date)
  }
}

Logger.scala:

import java.util.Date

class Logger extends Serializable {
  var time: Date = null
  var thread: String = ""
  var level: String = ""
  var logger: String = ""
  var msg: String = ""
  def this(time: Date, thread: String, level: String, logger: String, msg: String) {
    this()
    this.time = time;
    this.thread = thread;
    this.level = level;
    this.logger = logger;
    this.msg = msg;
  }
}

统计并写入Mysql

LoggerMysqlApp.scala:

import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.sql.SQLContext
import java.util.Date
import java.text.SimpleDateFormat
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.Row
import java.util.Properties

object LoggerMysqlApp {
  def main(args: Array[String]): Unit = {
    val sc = new SparkContext(new SparkConf().setAppName("输出写入Mysql"))
    /**
     * 从hive中加载数据
     */
    val hivec = new HiveContext(sc)
    val df = hivec.sql("select * from logger")
    val loggerRDD = df.rdd.map { x =>
      new Logger(
        LoggerApp.formatDate(x.getTimestamp(0)),
        x.getString(1),
        x.getString(2),
        x.getString(3),
        x.getString(4))
    }
    val resultRDD = loggerRDD.map { logger =>
      Pair(formatDateToStr(logger.time), 1)
    }.reduceByKey((a, b) =>
      { a + b }).map(f =>
      Row(f._1, f._2)).sortBy(f => f.getInt(1), false, 2)
    for (r <- resultRDD.take(10)) {
      println(r.getString(0) + ":" + r.getInt(1))
    }
    /**
     * 定义数据库Scheme
     */
    val schemaString = "time count"
    val schema =
      StructType(
        schemaString.split(" ").map(fieldName =>
          if ("time".equals(fieldName))
            StructField(fieldName, StringType, true)
          else
            StructField(fieldName, IntegerType, true)))
    /**
     * TODO计算每分钟日志的个数
     */
    val connectionProperties = new Properties()
    connectionProperties.setProperty("user", "root")
    connectionProperties.setProperty("password", ".")
    new SQLContext(sc).createDataFrame(resultRDD, schema).write.jdbc(
      "jdbc:mysql://192.168.136.128:3306/logger",
      "logger",
      connectionProperties);
  }
  def formatDateToStr(date: Date): String = {
    new SimpleDateFormat("yyyy-MM-dd HH:mm").format(date)
  }
}


目录
相关文章
|
13天前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
38 3
|
9天前
|
Java 关系型数据库 MySQL
自动化测试项目实战笔记(一):JDK、Tomcat、MySQL、Jpress环境安装和搭建
这篇文章是关于自动化测试项目实战笔记,涵盖了JDK、Tomcat、MySQL、Jpress环境的安装和搭建过程,以及测试用例和常见问题总结。
21 1
自动化测试项目实战笔记(一):JDK、Tomcat、MySQL、Jpress环境安装和搭建
|
6天前
|
Java 关系型数据库 MySQL
【编程基础知识】Eclipse连接MySQL 8.0时的JDK版本和驱动问题全解析
本文详细解析了在使用Eclipse连接MySQL 8.0时常见的JDK版本不兼容、驱动类错误和时区设置问题,并提供了清晰的解决方案。通过正确配置JDK版本、选择合适的驱动类和设置时区,确保Java应用能够顺利连接MySQL 8.0。
41 1
|
6天前
|
架构师 关系型数据库 MySQL
MySQL最左前缀优化原则:深入解析与实战应用
【10月更文挑战第12天】在数据库架构设计与优化中,索引的使用是提升查询性能的关键手段之一。其中,MySQL的最左前缀优化原则(Leftmost Prefix Principle)是复合索引(Composite Index)应用中的核心策略。作为资深架构师,深入理解并掌握这一原则,对于平衡数据库性能与维护成本至关重要。本文将详细解读最左前缀优化原则的功能特点、业务场景、优缺点、底层原理,并通过Java示例展示其实现方式。
16 1
|
26天前
|
消息中间件 canal 关系型数据库
Maxwell:binlog 解析器,轻松同步 MySQL 数据
Maxwell:binlog 解析器,轻松同步 MySQL 数据
161 11
|
27天前
|
存储 关系型数据库 MySQL
深入解析MySQL数据存储机制:从表结构到物理存储
深入解析MySQL数据存储机制:从表结构到物理存储
32 1
|
6天前
|
SQL 存储 关系型数据库
mysql 数据库空间统计sql
mysql 数据库空间统计sql
19 0
|
1月前
|
存储 关系型数据库 MySQL
技术解析:MySQL中取最新一条重复数据的方法
以上提供的两种方法都可以有效地从MySQL数据库中提取每个类别最新的重复数据。选择哪种方法取决于具体的使用场景和MySQL版本。子查询加分组的方法兼容性更好,适用于所有版本的MySQL;而窗口函数方法代码更简洁,执行效率可能更高,但需要MySQL 8.0及以上版本。在实际应用中,应根据数据量大小、查询性能需求以及MySQL版本等因素综合考虑,选择最合适的实现方案。
226 6
|
15天前
|
NoSQL 关系型数据库 MySQL
Tomcat、MySQL、Redis最大支持说明
综上所述,Tomcat、MySQL、Redis的并发处理能力均非固定值,而是通过合理的配置与优化策略,结合系统硬件资源,共同决定了它们在实际应用中的表现。开发者应根据应用的具体需求和资源条件,对这些组件进行细致的调优,以达到最佳性能表现。
28 0
|
17天前
|
关系型数据库 MySQL 数据库
MySQL技术深度解析:每次最大插入条数探秘
MySQL技术深度解析:每次最大插入条数探秘
30 0

推荐镜像

更多