算法+数据结构分享

简介: 在互联网、大数据、人工智能火爆的今天,“算法”这个词几乎妇孺皆知,业已成为“高薪”“牛X”的代名词。 应不少朋友的邀请,特连载本系列,旨在用最通俗的方式——“”讲人话、无废话、看得懂、用得上“”——将位于神龛之上的算法送进寻常百姓家。

引言
在互联网、大数据、人工智能火爆的今天,“算法”这个词几乎妇孺皆知,业已成为“高薪”“牛X”的代名词。

应不少朋友的邀请,特连载本系列,旨在用最通俗的方式——“”讲人话、无废话、看得懂、用得上“”——将位于神龛之上的算法送进寻常百姓家。

本篇作为系列的第一篇,采用“What、Why、How”文章结构,来给大家普及一下算法的基本概念(也纠正一些朋友的错误概念)。

What is Algorithm?(算法是个什么鬼 )
为了不落入俗套,本文不会重复wiki上“算法”的官方定义,而采用启发式结构来阐述算法的本质, 试想平时在遇到问题的时候,我们是如何解决的。

朴素而广泛的过程方法论如下:

  1. 重新定义问题,结构化描述
  2. 根据重定义,归类问题
  3. 根据问题类别,做经验匹配
  4. 根据匹配结果,分支处理:若匹配,采用经验方法;若匹配不上,设计开发新方法
  5. 迭代更新经验库,增强面向未来问题的能力

与算法相关的就是上面的第3步~第5步。

简单来说,算法本质是:解决某类问题的方法。如果方法已经在经验库里了,直接拿来主义,也就是“既有算法”;如果不在,那么设计开发的新方法,新方法就是“新算法”。

当然还有一种情况:虽然经验库里有针对该类问题的方法了,但是设计开发了一个更有效的新方法,那么也称为“新算法”。 下面来对几个关键点进行阐述!!!

什么是“更有效的算法”?
“更有效”的背后逻辑其实比较的就是“代价”,或者称为“开销”。经济上衡量就是成本,它分为两个维度:时间成本和资源成本。

资源成本在计算机上的体现就是硬盘、内存、CPU等一系列硬件资源开销。对这些硬件资源开销进一步抽象,就是空间成本。

算法其实从学科分类上讲,属于计算数学,计算数学属于应用数学。用学科术语来描述时间成本与空间成本,就是计算复杂度,很自然地,它也有两个维度:时间复杂度和空间复杂度。描述复杂度的数学符号是O()。后面我们会详细介绍O()的表达。

综上所述,所谓的“更有效”的算法,指的就是时间复杂度或者空间复杂度更优的算法。

为什么要“重新定义问题,结构化描述”?
把人脑也看做一台机器的话,很显然这台机器的运行方式和效率与计算机有所不同(尽管现在的机器学习在尽可能地模拟人脑的机理,但是两者至少在现阶段还有本质不同)。

人脑在连续信号和非结构化场景下的处理能力是卓越的,但是计算机只能处理离散信号,并且必须最终转化成结构化数据才能进行处理(尽管现在的机器学习可以通过自我学习来将数据结构化)。

用一张图来描述这个过程就是:
_1_jpeg

Why to use Algorithm?(算法有什么鬼用)
从上面对解决现实问题的过程方法论的描述中,其实已经可以看出算法的价值就在于:经验的重用。

套用一句IT行话就是“不要重复制造轮子”。好了,既然现在你已经对算法有了大致的感性认识,那么接下来根据人类的学习习惯,就需要来看看抽象的算法概念,在现实里到底“长什么模样”。

很多人认为“算法=程序或者程序”,这其实是一个狭义的理解。如前面所说的,算法的本质是解决某类问题的方法,而程序或者代码只是方法的一种表达形式而已。你也可以用自然语言或者伪代码来进行表达算法。

算法的“模样”(应对电灯不工作的算法——代码方式):
public STATUS_CODE lamp_issue_handler() {

STATUS_CODE ret_val = UNKNOWN_ISSUE; if (!isPowerOn(this)) { ret_val = powerOn(this) ? NOT_POWER_ON_ISSUE : POWER_ISSE; } else if(!isBulbCrash(this)) { ret_val = replaceBulb(this) ? BULB_CRASH_ISSUE : REPLACE_ISSUE; } else { ret_val = fixBulb(this) ? BULB_FIXABLE_ISSUE : FIX_FAILURE_ISSUE; } return ret_val;}
算法的“模样”(应对电灯不工作的算法——自然语言方式):
首先检查电源是否接好了:没有接好,接上。

如果接上了仍然不工作,看看灯泡是否烧坏了:如果是,换个新灯泡

如果灯泡没有烧坏,修理灯泡

算法的“模样”(应对电灯不工作的算法——流程图方式):

_2_jpeg

How to use Algorithm?(如何使用算法)
算法的本质就是方法,既然是方法,就是一系列的操作;既然是操作,就必然有作用对象。 在软件程序设计中,这样的作用对象就是“数据结构”。

怎么来理解数据结构呢?

前面我们讲到了,解决问题的第一步就是要将问题结构化描述。结构化描述的本质就是利用一系列便于操作的“基础元素”来表达。

那么怎样的“基础元素”是便于操作的呢?

首先我们要清楚,操作的主体是谁。从上一段的阐述来看,这个主体貌似是算法,但是我们注意,算法不是凭空去运行的,是要在计算机上运行的。

所以归根结底,操作的主体是计算机。所以,这里所谓的“便于操作”指的是便于计算机运行。

计算机运行有两个维度:硬件维度和软件维度。

1.从硬件维度看:

学过计算机组成原理就知道,程序是在计算机的CPU高速缓存和内存中运行的。对应的存储结构,通常都是线性的。

为了充分提升线性结构的性能优势,硬件厂商(如CPU厂商)在设计硬件时,就抽象了针对一些结构(如堆栈)的操作(如压栈、出栈),所以很自然地,这样的结构就应该作为数据结构。

2.从软件维度看:

我们编写的应用程序一般不会直接运行在硬件之上,而是运行在操作系统、运行时或者虚拟机(如JVM)之上。

所以操作系统、运行时或者虚拟机已经抽象的结构(如数组、队列、树、图等),也应该作为数据结构。

上面赘述了这么多,其实就是要表达一个观点:算法是要配合数据结构的,抛开数据结构谈算法就是无源之水、无根之树。

看到这里,我想你一定彻底明白,为什么图灵奖得主尼古拉斯·沃斯会提出那个著名的等式了:程序 = 算法 +数据结构。

总结
看到这里,相信你已经对算法这个概念已经不再陌生,它对于你而言也不再高高在上。

无论在大学学习,还是在工作中,大家都几乎被一种说法反复洗脑:算法非常重要,它是计算机的灵魂。

在这里,我想纠正一下这个错误的观点。首先,广义的算法不仅仅只是软件算法;再次,计算机系统不仅仅只是由软件构成,还有硬件。

硬件涉及到材料科学、制造工艺等一系列技术,这些是不能简单被算法替代的。所以,脱离上下文、一味强调算法的重要性是耍流氓。
来源商业新知网,原文标题:算法+数据结构(第01篇)走下神坛吧!算法

相关文章
|
26天前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
38 1
|
1月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
98 4
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
95 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
4天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
43 20
|
27天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
27天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
1月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
102 23
|
1月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
60 20
|
26天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
59 1
|
1月前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
51 0