顺序表数据结构在python中的应用

简介: 数据结构不仅仅指的数据值在逻辑上的结构,更有在存储空间上的位置结构,顺序表,故名思意是有一定顺序的数据结构。 顺序表最基本模型如图: 对于基本布局顺序表而言,它存储相同单元大小并且在内存地址上连续的数据,逻辑地址是其元素的逻辑顺序,物理地址第一个元素的内存地址加上离第一个元素的距离,如:e1物理地址是l0,那么e2的物理地址是e1的地址加上e1所占用的大小c,以此类推,en的物理地址是l0+(n-1)*c。

数据结构不仅仅指的数据值在逻辑上的结构,更有在存储空间上的位置结构,顺序表,故名思意是有一定顺序的数据结构。

顺序表最基本模型如图:

对于基本布局顺序表而言,它存储相同单元大小并且在内存地址上连续的数据,逻辑地址是其元素的逻辑顺序,物理地址第一个元素的内存地址加上离第一个元素的距离,如:e1物理地址是l0,那么e2的物理地址是e1的地址加上e1所占用的大小c,以此类推,en的物理地址是l0+(n-1)*c。

这种基本布局出现了一个问题,如果其中的元素大小不统一,那么岂不是要用最大存储单元作为基本单位,非常浪费空间,因此出现了外置顺序表,它是将元素的索引以相同单元大小连续存放,索引记录对应数据在内存上的地址,那么我们可以通过基本布局的方式去找到索引,再根据索引找到数据。

在熟悉了顺序表的基本模型后,我们再看顺表的结构,如图所示:

实际的顺序表包含两部分,一部分是顺序表的记录信息块(含顺序表容量、元素个数),一部分是数据块,这两部放在一起是一体式结构,如果分离通过索引连接是分离式结构。

顺序表含有容量和容量的使用情况信息,那么很容易就实现扩容,其扩容方式有两种:一种是频繁的固定扩容,即每次增加固定单位的容量,因此会平凡扩容;另一种是倍增的扩容,即按照2、4、8、16这种方式来扩,这样扩容频率低,但可能造成浪费。

在python中list和tuple都是顺序表结构,list是动态顺序表,支持内部结构变化如增加或者减少元素,而tupele并不支持结构的改变,其他性能和list一致。

既然我们知道了python中使用最频繁的list内在结构,那我们就应该明白append是在顺序表末尾增加一个元素,他的时间复杂度是O(1),而insert插入函数是将插入位置之后的元素依次向下挪动一个位置,复杂度是O(n);同理删除一个元素,当删除最后一个位置的元素pop()只是删除循序表的最后一个位置元素,如果是删除指定元素,那么该元素其后的元素依次挪动一个位置其时间复杂度为O(n);

这便是数据结构的意义,它对python性能的提升有指导性的作用。


------------------------------


ID:Python之战


|作|者|公(zhong)号:python之战 


专注Python,专注于网络爬虫、RPA的学习-践行-总结


喜欢研究技术瓶颈并分享,欢迎围观,共同学习。


独学而无友,则孤陋而寡闻!


---------------------------


相关文章
|
2月前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
91 20
|
24天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
47 12
|
23天前
|
存储 人工智能 程序员
通义灵码AI程序员实战:从零构建Python记账本应用的开发全解析
本文通过开发Python记账本应用的真实案例,展示通义灵码AI程序员2.0的代码生成能力。从需求分析到功能实现、界面升级及测试覆盖,AI程序员展现了需求转化、技术选型、测试驱动和代码可维护性等核心价值。文中详细解析了如何使用Python标准库和tkinter库实现命令行及图形化界面,并生成单元测试用例,确保应用的稳定性和可维护性。尽管AI工具显著提升开发效率,但用户仍需具备编程基础以进行调试和优化。
216 9
|
22天前
|
算法 安全 网络安全
基于 Python 的布隆过滤器算法在内网行为管理中的应用探究
在复杂多变的网络环境中,内网行为管理至关重要。本文介绍布隆过滤器(Bloom Filter),一种高效的空间节省型概率数据结构,用于判断元素是否存在于集合中。通过多个哈希函数映射到位数组,实现快速访问控制。Python代码示例展示了如何构建和使用布隆过滤器,有效提升企业内网安全性和资源管理效率。
50 9
|
26天前
|
DataX
☀☀☀☀☀☀☀有关栈和队列应用的oj题讲解☼☼☼☼☼☼☼
### 简介 本文介绍了三种数据结构的实现方法:用两个队列实现栈、用两个栈实现队列以及设计循环队列。具体思路如下: 1. **用两个队列实现栈**: - 插入元素时,选择非空队列进行插入。 - 移除栈顶元素时,将非空队列中的元素依次转移到另一个队列,直到只剩下一个元素,然后弹出该元素。 - 判空条件为两个队列均为空。 2. **用两个栈实现队列**: - 插入元素时,选择非空栈进行插入。 - 移除队首元素时,将非空栈中的元素依次转移到另一个栈,再将这些元素重新放回原栈以保持顺序。 - 判空条件为两个栈均为空。
|
3月前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
139 66
|
2月前
|
人工智能 开发者 Python
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
256 9
|
3月前
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
223 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
2月前
|
存储 SQL 大数据
Python 在企业级应用中的两大硬伤
关系数据库和SQL在企业级应用中面临诸多挑战,如复杂SQL难以移植、数据库负担重、应用间强耦合等。Python虽是替代选择,但在大数据运算和版本管理方面存在不足。SPL(esProc Structured Programming Language)作为开源语言,专门针对结构化数据计算,解决了Python的这些硬伤。它提供高效的大数据运算能力、并行处理、高性能文件存储格式(如btx、ctx),以及一致的版本管理,确保企业级应用的稳定性和高性能。此外,SPL与Java无缝集成,适合现代J2EE体系应用,简化开发并提升性能。
|
2月前
|
机器学习/深度学习 存储 C++
【C++数据结构——线性表】顺序表的基本运算(头歌实践教学平台习题)【合集】
本文档介绍了线性表的基本运算任务,涵盖顺序表和链表的初始化、销毁、判定是否为空、求长度、输出、查找元素、插入和删除元素等内容。通过C++代码示例详细展示了每一步骤的具体实现方法,并提供了测试说明和通关代码。 主要内容包括: - **任务描述**:实现顺序表的基本运算。 - **相关知识**:介绍线性表的基本概念及操作,如初始化、销毁、判定是否为空表等。 - **具体操作**:详述顺序表和链表的初始化、求长度、输出、查找、插入和删除元素的方法,并附有代码示例。 - **测试说明**:提供测试输入和预期输出,确保代码正确性。 - **通关代码**:给出完整的C++代码实现,帮助完成任务。 文档
75 5

热门文章

最新文章