【Python 学习进阶月刊】 第一期:深入Python与日志服务,玩转大规模数据分析处理实战

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 欢迎订阅Python学习进阶月刊 #精彩直播: Python 系列直播——深入Python与日志服务,玩转大规模数据分析处理实战 IPython/Jupyter Notebook非常流行,但随着数据量越来越大(例如几百亿条电商平台访问日志),如何继续保持灵活的交互式分析,是一个挑战。

欢迎订阅Python学习进阶月刊

精彩直播:

Python 系列直播——深入Python与日志服务,玩转大规模数据分析处理实战

IPython/Jupyter Notebook非常流行,但随着数据量越来越大(例如几百亿条电商平台访问日志),如何继续保持灵活的交互式分析,是一个挑战。阿里云日志服务作为阿里商业操作系统的智能运维平台,无需开发就能快捷完成海量日志数据的采集、消费、投递以及查询分析等功能。这里介绍如何借助日志服务对IPython/Jupyter扩展的功能,用Python对海量数据进行深度加工(ETL)、交互式分析(通过SQL、DataFrame)、机器学习与可视化等。点击查看

Python第五讲——关于爬虫如何做js逆向的思路
Python 第六讲——Python爬虫进阶 JS分析—浏览器指纹
Python 第七讲——从实战中了解异步爬虫aiohttp的使用

500619594_meitu_1

直播预告:

Python 第九讲——灵活运用docker,实现深度学习的环境搭建
Python 系列直播——深入Python与日志服务,玩转大规模数据分析处理实战第五讲

技术干货

scrapy配置文件操作核心API解读
scrapy官方文档提供的常见使用问题
异步网络模块之aiohttp(一)
一份详细的asyncio入门教程
python小技巧:获取字典中值最大者的key
书籍:python物联网人工智能 Hands-On Artificial Intelligence for IoT - 2019
2019年3月TIOBE编程语言排名: Python和Visual Basic .NET、c++引领增长
5分钟,关于Python 解包,你需要知道的一切

问答

Python 技术百问
(Django)我们如何将单选按钮值存储到数据库中
如何使用pickle进行k-means聚类
检查pandas dataframe中是否存在值
Python 3.6 sleep()在同一个字符串内的不同睡眠时间取决于字符
将路径转换为列表
在pandas中合并两个数据帧
Python使用集成绘制函数


【Python技术进阶】


群福利:群内每周进行群直播技术分享及问答


_2019_01_15_10_28_39

云栖社区直播&沙龙专家招募

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
16天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
45 0
|
10天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
26 2
|
8天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
8天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
10天前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
10天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
17天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
30 2
|
1月前
|
数据采集 数据挖掘 API
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
在Python数据分析的世界里,Pandas和NumPy无疑是两颗璀璨的明星,它们为数据科学家和工程师提供了强大而灵活的工具集,用于处理、分析和探索数据。今天,我们将一起深入探索这两个库的高级功能,看看它们如何成为数据分析的加速器。
40 1
|
1月前
|
数据采集 数据可视化 数据挖掘
Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
【10月更文挑战第3天】Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
89 0
|
3月前
|
数据采集 数据挖掘 数据处理
Python数据分析:Numpy、Pandas高级
在上一篇博文中,我们介绍了Python数据分析中NumPy和Pandas的基础知识。本文将深入探讨NumPy和Pandas的高级功能,并通过一个综合详细的例子展示这些高级功能的应用。