scrapy_redis分布式组件Connection源码解读及工作原理

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 之前已经将主要的scrapy_redis分布式组件源码及其工作原理介绍完成,今天介绍分布式组件的最后一个Connection,这是Redis的连接组件。《RedisSpider的调度队列实现过程及其源码》《scrapy中scrapy_redis分布式内置pipeline源码及其工作原理》...

之前已经将主要的scrapy_redis分布式组件源码及其工作原理介绍完成,今天介绍分布式组件的最后一个Connection,这是Redis的连接组件。

RedisSpider的调度队列实现过程及其源码

scrapy中scrapy_redis分布式内置pipeline源码及其工作原理

scrapy分布式调度源码及其实现过程

scrapy分布式Spider源码分析及实现过程

scrapy分布式去重组件源码及其实现过程

scrapy_redis中序列化源码及其在程序设计中的应用

Connection组件是用创建Redis的客户端的,其源码如下:

import six

from scrapy.utils.misc import load_object

from . import defaults


# Shortcut maps 'setting name' -> 'parmater name'.
SETTINGS_PARAMS_MAP = {
    'REDIS_URL''url',
    'REDIS_HOST''host',
    'REDIS_PORT''port',
    'REDIS_ENCODING''encoding',
}


def get_redis_from_settings(settings):
    """Returns a redis client instance from given Scrapy settings object.

    This function uses ``get_client`` to instantiate the client and uses
    ``defaults.REDIS_PARAMS`` global as defaults values for the parameters. You
    can override them using the ``REDIS_PARAMS`` setting.

    Parameters
    ----------
    settings : Settings
        A scrapy settings object. See the supported settings below.

    Returns
    -------
    server
        Redis client instance.

    Other Parameters
    ----------------
    REDIS_URL : str, optional
        Server connection URL.
    REDIS_HOST : str, optional
        Server host.
    REDIS_PORT : str, optional
        Server port.
    REDIS_ENCODING : str, optional
        Data encoding.
    REDIS_PARAMS : dict, optional
        Additional client parameters.

    """
    params = defaults.REDIS_PARAMS.copy()
    params.update(settings.getdict('REDIS_PARAMS'))
    XXX: Deprecate REDIS_* settings.
    for source, dest in SETTINGS_PARAMS_MAP.items():
        val = settings.get(source)
        if val:
            params[dest] = val

    # Allow ``redis_cls`` to be a path to a class.
    if isinstance(params.get('redis_cls'), six.string_types):
        params['redis_cls'] = load_object(params['redis_cls'])

    return get_redis(**params)


# Backwards compatible alias.
from_settings = get_redis_from_settings


def get_redis(**kwargs):
    """Returns a redis client instance.

    Parameters
    ----------
    redis_cls : class, optional
        Defaults to ``redis.StrictRedis``.
    url : str, optional
        If given, ``redis_cls.from_url`` is used to instantiate the class.
    **kwargs
        Extra parameters to be passed to the ``redis_cls`` class.

    Returns
    -------
    server
        Redis client instance.

    """
    redis_cls = kwargs.pop('redis_cls', defaults.REDIS_CLS)
    url = kwargs.pop('url'None)
    if url:
        return redis_cls.from_url(url, **kwargs)
    else:
        return redis_cls(**kwargs)
AI 代码解读


首先是设置了配置文件配置字段和传入参数的键值对SETTINGS_PARAMS_MAP,这个键值对后面会反转。

SETTINGS_PARAMS_MAP = {
    'REDIS_URL''url',
    'REDIS_HOST''host',
    'REDIS_PORT''port',
    'REDIS_ENCODING''encoding',
}
AI 代码解读


然后读出默认的配置参数给params字段并将setting字段中的Redis配置更新进params字段。

params = defaults.REDIS_PARAMS.copy()
params.update(settings.getdict('REDIS_PARAMS'))
AI 代码解读


接着开始将配置文件中的配置字段替换成传入参数字段,如:REDIS_URL替换成url,REDIS_HOST替换成host。

    for source, dest in SETTINGS_PARAMS_MAP.items():
        val = settings.get(source)
        if val:
            params[dest] = val
AI 代码解读


然后是处理实例化Redis客户端的类,根据‘redis_cls’路径返回实例化redis客户端的类load_object(params['redis_cls'])

 if isinstance(params.get('redis_cls'), six.string_types):
        params['redis_cls'] = load_object(params['redis_cls'])
AI 代码解读


然后是调用创建客户端的函数get_redis(),该函数中redis_cls = kwargs.pop('redis_cls', defaults.REDIS_CLS)的作用是在参数列表中弹出实例化客户端的类,如果没有将用默认的类创建

REDIS_CLS = redis.StrictRedis

    

url = kwargs.pop('url', None)弹出url,如果有url弹出那么将选择url连接的方式实例化,反之选择含有账号密码的参数列表实例化。

    redis_cls = kwargs.pop('redis_cls', defaults.REDIS_CLS)
    url = kwargs.pop('url', None)
    if url:
        return redis_cls.from_url(url, **kwargs)
    else:
        return redis_cls(**kwargs)
AI 代码解读


当然最后就返回了一个连接的redis客户端。


原文链接
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
高并发秒杀系统实战(Redis+Lua分布式锁防超卖与库存扣减优化)
秒杀系统面临瞬时高并发、资源竞争和数据一致性挑战。传统方案如数据库锁或应用层锁存在性能瓶颈或分布式问题,而基于Redis的分布式锁与Lua脚本原子操作成为高效解决方案。通过Redis的`SETNX`实现分布式锁,结合Lua脚本完成库存扣减,确保操作原子性并大幅提升性能(QPS从120提升至8,200)。此外,分段库存策略、多级限流及服务降级机制进一步优化系统稳定性。最佳实践包括分层防控、黄金扣减法则与容灾设计,强调根据业务特性灵活组合技术手段以应对高并发场景。
191 7
【📕分布式锁通关指南 10】源码剖析redisson之MultiLock的实现
Redisson 的 MultiLock 是一种分布式锁实现,支持对多个独立的 RLock 同时加锁或解锁。它通过“整锁整放”机制确保所有锁要么全部加锁成功,要么完全回滚,避免状态不一致。适用于跨多个 Redis 实例或节点的场景,如分布式任务调度。其核心逻辑基于遍历加锁列表,失败时自动释放已获取的锁,保证原子性。解锁时亦逐一操作,降低死锁风险。MultiLock 不依赖 Lua 脚本,而是封装多锁协调,满足高一致性需求的业务场景。
62 0
【📕分布式锁通关指南 10】源码剖析redisson之MultiLock的实现
|
2月前
|
redis分布式锁在高并发场景下的方案设计与性能提升
本文探讨了Redis分布式锁在主从架构下失效的问题及其解决方案。首先通过CAP理论分析,Redis遵循AP原则,导致锁可能失效。针对此问题,提出两种解决方案:Zookeeper分布式锁(追求CP一致性)和Redlock算法(基于多个Redis实例提升可靠性)。文章还讨论了可能遇到的“坑”,如加从节点引发超卖问题、建议Redis节点数为奇数以及持久化策略对锁的影响。最后,从性能优化角度出发,介绍了减少锁粒度和分段锁的策略,并结合实际场景(如下单重复提交、支付与取消订单冲突)展示了分布式锁的应用方法。
148 3
Redis设计与实现——分布式Redis
Redis Sentinel 和 Cluster 是 Redis 高可用与分布式架构的核心组件。Sentinel 提供主从故障检测与自动切换,通过主观/客观下线判断及 Raft 算法选举领导者完成故障转移,但存在数据一致性和复杂度问题。Cluster 支持数据分片和水平扩展,基于哈希槽分配数据,具备自动故障转移和节点发现机制,适合大规模高并发场景。复制机制包括全量同步和部分同步,通过复制积压缓冲区优化同步效率,但仍面临延迟和资源消耗挑战。两者各有优劣,需根据业务需求选择合适方案。
|
2月前
|
从扣减库存场景来讲讲redis分布式锁中的那些“坑”
本文从一个简单的库存扣减场景出发,深入分析了高并发下的超卖问题,并逐步优化解决方案。首先通过本地锁解决单机并发问题,但集群环境下失效;接着引入Redis分布式锁,利用SETNX命令实现加锁,但仍存在死锁、锁过期等隐患。文章详细探讨了通过设置唯一标识、续命机制等方法完善锁的可靠性,并最终引出Redisson工具,其内置的锁续命和原子性操作极大简化了分布式锁的实现。最后,作者剖析了Redisson源码,揭示其实现原理,并预告后续关于主从架构下分布式锁的应用与性能优化内容。
100 0
|
2月前
|
Redis+Caffeine构建高性能二级缓存
大家好,我是摘星。今天为大家带来的是Redis+Caffeine构建高性能二级缓存,废话不多说直接开始~
295 0
基于Spring Data Redis与RabbitMQ实现字符串缓存和计数功能(数据同步)
总的来说,借助Spring Data Redis和RabbitMQ,我们可以轻松实现字符串缓存和计数的功能。而关键的部分不过是一些"厨房的套路",一旦你掌握了这些套路,那么你就像厨师一样可以准备出一道道饕餮美食了。通过这种方式促进数据处理效率无疑将大大提高我们的生产力。
110 32
|
2月前
|
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
69 5
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
Redis--缓存击穿、缓存穿透、缓存雪崩
缓存击穿、缓存穿透和缓存雪崩是Redis使用过程中可能遇到的常见问题。理解这些问题的成因并采取相应的解决措施,可以有效提升系统的稳定性和性能。在实际应用中,应根据具体场景,选择合适的解决方案,并持续监控和优化缓存策略,以应对不断变化的业务需求。
188 29

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问