百度发布NLP模型ERNIE,基于知识增强,在多个中文NLP任务中表现超越BERT

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: ERNIE 通过建模海量数据中的词、实体及实体关系,学习真实世界的语义知识。

雷锋网(公众号:雷锋网) AI 科技评论消息,Google 近期提出的 BERT 模型,通过预测屏蔽的词,利用 Transformer 的多层 self-attention 双向建模能力,取得了很好的效果。但是,BERT 模型的建模对象主要聚焦在原始语言信号上,较少利用语义知识单元建模。这个问题在中文方面尤为明显,例如,BERT 在处理中文语言时,通过预测汉字进行建模,模型很难学出更大语义单元的完整语义表示。例如,对于乒 [mask] 球,清明上 [mask] 图,[mask] 颜六色这些词,BERT 模型通过字的搭配,很容易推测出掩码的字信息,但没有显式地对语义概念单元 (如乒乓球、清明上河图) 以及其对应的语义关系进行建模。

设想如果能够让模型学习到海量文本中蕴含的潜在知识,势必会进一步提升各个 NLP 任务效果。基于此,百度提出了基于知识增强的 ERNIE 模型。

ERNIE 通过建模海量数据中的词、实体及实体关系,学习真实世界的语义知识。相较于 BERT 学习局部语言共现的语义表示,ERNIE 直接对语义知识进行建模,增强了模型语义表示能力。

例如以下例子:

TB1cwxDMpzqK1RjSZFvXXcB7VXa.png

Learned by BERT :哈 [mask] 滨是 [mask] 龙江的省会,[mask] 际冰 [mask] 文化名城。

Learned by ERNIE:[mask] [mask] [mask] 是黑龙江的省会,国际 [mask] [mask] 文化名城。

在 BERT 模型中,通过『哈』与『滨』的局部共现,即可判断出『尔』字,模型没有学习与『哈尔滨』相关的知识。而 ERNIE 通过学习词与实体的表达,使模型能够建模出『哈尔滨』与『黑龙江』的关系,学到『哈尔滨』是『黑龙江』的省会以及『哈尔滨』是个冰雪城市。

训练数据方面,除百科类、资讯类中文语料外,ERNIE 还引入了论坛对话类数据,利用 DLM(Dialogue Language Model)建模 Query-Response 对话结构,将对话 Pair 对作为输入,引入 Dialogue Embedding 标识对话的角色,利用 Dialogue Response Loss 学习对话的隐式关系,进一步提升模型的语义表示能力。

通过在自然语言推断、语义相似度、命名实体识别、情感分析、问答匹配 5 个公开的中文数据集合上进行效果验证,ERNIE 模型相较 BERT 取得了更好的效果。

1. 自然语言推断任务 XNLI

XNLI 由 Facebook 和纽约大学的研究者联合构建,旨在评测模型多语言的句子理解能力。目标是判断两个句子的关系(矛盾、中立、蕴含)。

链接:https://github.com/facebookresearch/XNLI

TB1XZNuMrPpK1RjSZFFXXa5PpXa.png

2. 语义相似度任务 LCQMC

LCQMC 是哈尔滨工业大学在自然语言处理国际顶会 COLING2018 构建的问题语义匹配数据集,其目标是判断两个问题的语义是否相同。

链接: http://aclweb.org/anthology/C18-1166

TB1wwxDMpzqK1RjSZFvXXcB7VXa.png

3. 情感分析任务 ChnSentiCorp

ChnSentiCorp 是中文情感分析数据集,其目标是判断一段话的情感态度。

TB1GZRqMwDqK1RjSZSyXXaxEVXa.png

4. 命名实体识别任务 MSRA-NER

MSRA-NER 数据集由微软亚研院发布,其目标是命名实体识别,是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名等。

TB1gsVuMrPpK1RjSZFFXXa5PpXa.png

5. 检索式问答匹配任务 NLPCC-DBQA 

NLPCC-DBQA 是由国际自然语言处理和中文计算会议 NLPCC 于 2016 年举办的评测任务,其目标是选择能够回答问题的答案。

地址: http://tcci.ccf.org.cn/conference/2016/dldoc/evagline2.pdf

TB1_GmyXu3tHKVjSZSgXXX4QFXa.png

预训练模型下载地址:

https://ernie.bj.bcebos.com/ERNIE.tgz

任务数据下载地址:

https://ernie.bj.bcebos.com/task_data.tgz

Github 地址:

https://github.com/PaddlePaddle/LARK/tree/develop/ERNIE

雷锋网版权文章,未经授权禁止转载。详情见转载须知。

目录
相关文章
|
3月前
|
数据采集 自然语言处理 机器人
如何使用生成器来提高自然语言处理任务的性能?
如何使用生成器来提高自然语言处理任务的性能?
|
29天前
|
人工智能 自然语言处理 前端开发
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
Director 是一个构建视频智能体的 AI 框架,用户可以通过自然语言命令执行复杂的视频任务,如搜索、编辑、合成和生成视频内容。该框架基于 VideoDB 的“视频即数据”基础设施,集成了多个预构建的视频代理和 AI API,支持高度定制化,适用于开发者和创作者。
93 9
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
|
1月前
|
人工智能 自然语言处理
Promptriever:信息检索模型,支持自然语言提示响应用户搜索需求
Promptriever 是一种新型信息检索模型,由约翰斯·霍普金斯大学和 Samaya AI 联合推出。该模型能够接受自然语言提示,并以直观的方式响应用户的搜索需求。通过在 MS MARCO 数据集上的训练,Promptriever 在标准检索任务上表现出色,能够更有效地遵循详细指令,提高查询的鲁棒性和检索性能。
64 6
Promptriever:信息检索模型,支持自然语言提示响应用户搜索需求
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
探索深度学习中的Transformer模型及其在自然语言处理中的应用
探索深度学习中的Transformer模型及其在自然语言处理中的应用
67 5
|
2月前
|
机器学习/深度学习 自然语言处理 PyTorch
从零开始构建nlp情感分析模型!
本教程介绍了如何使用PyTorch和Hugging Face的Transformers库构建一个情感分析模型。主要内容包括导入所需库、读取训练数据集、加载预训练的BERT模型和分词器、定义情感数据集类、划分训练集和验证集、创建数据加载器、设置训练参数、训练模型、评估模型性能以及定义和测试预测函数。通过这些步骤,可以实现一个简单而有效的情感分析模型。
249 2
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习与自然语言处理的前沿技术:Transformer模型的深度解析
探索深度学习与自然语言处理的前沿技术:Transformer模型的深度解析
133 0
|
3月前
|
机器学习/深度学习 存储 自然语言处理
从理论到实践:如何使用长短期记忆网络(LSTM)改善自然语言处理任务
【10月更文挑战第7天】随着深度学习技术的发展,循环神经网络(RNNs)及其变体,特别是长短期记忆网络(LSTMs),已经成为处理序列数据的强大工具。在自然语言处理(NLP)领域,LSTM因其能够捕捉文本中的长期依赖关系而变得尤为重要。本文将介绍LSTM的基本原理,并通过具体的代码示例来展示如何在实际的NLP任务中应用LSTM。
255 4
|
3月前
|
机器学习/深度学习 自然语言处理 知识图谱
|
3月前
|
机器学习/深度学习 自然语言处理 算法
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
276 0
|
3月前
|
机器学习/深度学习 自然语言处理 并行计算
探索深度学习中的Transformer模型及其在自然语言处理中的应用
【10月更文挑战第6天】探索深度学习中的Transformer模型及其在自然语言处理中的应用
236 0
下一篇
开通oss服务