Flink1.7.2 并行计算源码分析

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: ## 概述 - Flink Window如何进行并行计算 - Flink source如何按key,hash分区,并发射到对应分区的下游Window

Flink1.7.2 并行计算源码分析

源码

概述

  • Flink Window如何进行并行计算
  • Flink source如何按key,hash分区,并发射到对应分区的下游Window

WordCount 程序

package com.opensourceteams.module.bigdata.flink.example.stream.worldcount.nc.parallelism

import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.windowing.time.Time

/**
  * nc -lk 1234  输入数据
  */
object SocketWindowWordCountLocal {



  def main(args: Array[String]): Unit = {


    val port = 1234
    // get the execution environment
   // val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment


    val configuration : Configuration = getConfiguration(true)

    val env:StreamExecutionEnvironment = StreamExecutionEnvironment.createLocalEnvironment(1,configuration)





    // get input data by connecting to the socket
    val dataStream = env.socketTextStream("localhost", port, '\n')



    import org.apache.flink.streaming.api.scala._
    val textResult = dataStream.flatMap( w => w.split("\\s") ).map( w => WordWithCount(w,1))
      .keyBy("word")
      /**
        * 每20秒刷新一次,相当于重新开始计数,
        * 好处,不需要一直拿所有的数据统计
        * 只需要在指定时间间隔内的增量数据,减少了数据规模
        */
      .timeWindow(Time.seconds(5))
      //.countWindow(3)
      //.countWindow(3,1)
      //.countWindowAll(3)


      .sum("count" )

    textResult
      .setParallelism(3)
      .print()




    if(args == null || args.size ==0){


      println("==================================以下为执行计划==================================")
      println("执行地址(firefox效果更好):https://flink.apache.org/visualizer")
      //执行计划
      //println(env.getExecutionPlan)
     // println("==================================以上为执行计划 JSON串==================================\n")
      //StreamGraph
     println(env.getStreamGraph.getStreamingPlanAsJSON)



      //JsonPlanGenerator.generatePlan(jobGraph)

      env.execute("默认作业")

    }else{
      env.execute(args(0))
    }

    println("结束")

  }


  // Data type for words with count
  case class WordWithCount(word: String, count: Long){
    //override def toString: String = Thread.currentThread().getName + word + " : " + count
  }


  def getConfiguration(isDebug:Boolean = false):Configuration = {

    val configuration : Configuration = new Configuration()

    if(isDebug){
      val timeout = "100000 s"
      val timeoutHeartbeatPause = "1000000 s"
      configuration.setString("akka.ask.timeout",timeout)
      configuration.setString("akka.lookup.timeout",timeout)
      configuration.setString("akka.tcp.timeout",timeout)
      configuration.setString("akka.transport.heartbeat.interval",timeout)
      configuration.setString("akka.transport.heartbeat.pause",timeoutHeartbeatPause)
      configuration.setString("akka.watch.heartbeat.pause",timeout)
      configuration.setInteger("heartbeat.interval",10000000)
      configuration.setInteger("heartbeat.timeout",50000000)
    }


    configuration
  }


}

输入数据

1 2 3 4 5 6 7 8 9 10

源码分析

ExecutionGraph.scheduleEager

  • ExecutionGraph 调度
  • executionsToDeploy包括所有的(Source,Window,Sink),在这里设置的setParallelism()并行度为多少,就有多少个Window,本案例设置的为3,所以executionsToDeploy对象的数据如下

    • (Source: Socket Stream -> Flat Map -> Map (1/1))
    • (Window(TumblingProcessingTimeWindows(5000), ProcessingTimeTrigger, SumAggregator, PassThroughWindowFunction) (3/3))
    • (Window(TumblingProcessingTimeWindows(5000), ProcessingTimeTrigger, SumAggregator, PassThroughWindowFunction) (2/3))
    • (Window(TumblingProcessingTimeWindows(5000), ProcessingTimeTrigger, SumAggregator, PassThroughWindowFunction) (1/3))
    • (Sink: Print to Std. Out (1/1))
    • 详细executionsToDeploy对象
  1. = {Execution@5324} "Attempt #0 (Source: Socket Stream -> Flat Map -> Map (1/1)) @ org.apache.flink.runtime.jobmaster.slotpool.SingleLogicalSlot@22dc33b2 - [SCHEDULED]"
  2. = {Execution@5506} "Attempt #0 (Window(TumblingProcessingTimeWindows(5000), ProcessingTimeTrigger, SumAggregator, PassThroughWindowFunction) (3/3)) @ org.apache.flink.runtime.jobmaster.slotpool.SingleLogicalSlot@8f216e4 - [SCHEDULED]"
  3. = {Execution@5507} "Attempt #0 (Window(TumblingProcessingTimeWindows(5000), ProcessingTimeTrigger, SumAggregator, PassThroughWindowFunction) (2/3)) @ org.apache.flink.runtime.jobmaster.slotpool.SingleLogicalSlot@50ccca83 - [SCHEDULED]"
  4. = {Execution@5508} "Attempt #0 (Window(TumblingProcessingTimeWindows(5000), ProcessingTimeTrigger, SumAggregator, PassThroughWindowFunction) (1/3)) @ org.apache.flink.runtime.jobmaster.slotpool.SingleLogicalSlot@243b4f41 - [SCHEDULED]"
  5. = {Execution@5509} "Attempt #0 (Sink: Print to Std. Out (1/1)) @ org.apache.flink.runtime.jobmaster.slotpool.SingleLogicalSlot@67b9a9d7 - [SCHEDULED]"

源码

调用Execution.deploy()进行部署

/**
    *
    *
    * @param slotProvider  The resource provider from which the slots are allocated
    * @param timeout       The maximum time that the deployment may take, before a
    *                      TimeoutException is thrown.
    * @returns Future which is completed once the {@link ExecutionGraph} has been scheduled.
    * The future can also be completed exceptionally if an error happened.
    */
   private CompletableFuture<Void> scheduleEager(SlotProvider slotProvider, final Time timeout) {
       checkState(state == JobStatus.RUNNING, "job is not running currently");

       // Important: reserve all the space we need up front.
       // that way we do not have any operation that can fail between allocating the slots
       // and adding them to the list. If we had a failure in between there, that would
       // cause the slots to get lost
       final boolean queued = allowQueuedScheduling;

       // collecting all the slots may resize and fail in that operation without slots getting lost
       final ArrayList<CompletableFuture<Execution>> allAllocationFutures = new ArrayList<>(getNumberOfExecutionJobVertices());

       final Set<AllocationID> allPreviousAllocationIds =
           Collections.unmodifiableSet(computeAllPriorAllocationIdsIfRequiredByScheduling());

       // allocate the slots (obtain all their futures
       for (ExecutionJobVertex ejv : getVerticesTopologically()) {
           // these calls are not blocking, they only return futures
           Collection<CompletableFuture<Execution>> allocationFutures = ejv.allocateResourcesForAll(
               slotProvider,
               queued,
               LocationPreferenceConstraint.ALL,
               allPreviousAllocationIds,
               timeout);

           allAllocationFutures.addAll(allocationFutures);
       }

       // this future is complete once all slot futures are complete.
       // the future fails once one slot future fails.
       final ConjunctFuture<Collection<Execution>> allAllocationsFuture = FutureUtils.combineAll(allAllocationFutures);

       final CompletableFuture<Void> currentSchedulingFuture = allAllocationsFuture
           .thenAccept(
               (Collection<Execution> executionsToDeploy) -> {
                   for (Execution execution : executionsToDeploy) {
                       try {
                           execution.deploy();
                       } catch (Throwable t) {
                           throw new CompletionException(
                               new FlinkException(
                                   String.format("Could not deploy execution %s.", execution),
                                   t));
                       }
                   }
               })
           // Generate a more specific failure message for the eager scheduling
           .exceptionally(
               (Throwable throwable) -> {
                   final Throwable strippedThrowable = ExceptionUtils.stripCompletionException(throwable);
                   final Throwable resultThrowable;

                   if (strippedThrowable instanceof TimeoutException) {
                       int numTotal = allAllocationsFuture.getNumFuturesTotal();
                       int numComplete = allAllocationsFuture.getNumFuturesCompleted();
                       String message = "Could not allocate all requires slots within timeout of " +
                           timeout + ". Slots required: " + numTotal + ", slots allocated: " + numComplete;

                       resultThrowable = new NoResourceAvailableException(message);
                   } else {
                       resultThrowable = strippedThrowable;
                   }

                   throw new CompletionException(resultThrowable);
               });

       return currentSchedulingFuture;
   }

ExecutionState

  • 由于(Source、Window、Sink)都是做为Execution对象来运行,先来了解一下Execution有哪些状态,即状态的流转,方便理解流程
  • Execution状态的流转为: CREATED(已创建) -> SCHEDULED(已调度) -> DEPLOYING(部署中) -> RUNNING(运行中) -> FINISHED(已完成) 等,以下ExecutionState中有详细说明
package org.apache.flink.runtime.execution;

/**
 * An enumeration of all states that a task can be in during its execution.
 * Tasks usually start in the state {@code CREATED} and switch states according to
 * this diagram:
 * <pre>{@code
 *
 *     CREATED  -> SCHEDULED -> DEPLOYING -> RUNNING -> FINISHED
 *        |            |            |          |
 *        |            |            |   +------+
 *        |            |            V   V
 *        |            |         CANCELLING -----+----> CANCELED
 *        |            |                         |
 *        |            +-------------------------+
 *        |
 *        |                                   ... -> FAILED
 *        V
 *    RECONCILING  -> RUNNING | FINISHED | CANCELED | FAILED
 *
 * }</pre>
 *
 * <p>It is possible to enter the {@code RECONCILING} state from {@code CREATED}
 * state if job manager fail over, and the {@code RECONCILING} state can switch into
 * any existing task state.
 *
 * <p>It is possible to enter the {@code FAILED} state from any other state.
 *
 * <p>The states {@code FINISHED}, {@code CANCELED}, and {@code FAILED} are
 * considered terminal states.
 */
public enum ExecutionState {

    CREATED,
    
    SCHEDULED,
    
    DEPLOYING,
    
    RUNNING,

    /**
     * This state marks "successfully completed". It can only be reached when a
     * program reaches the "end of its input". The "end of input" can be reached
     * when consuming a bounded input (fix set of files, bounded query, etc) or
     * when stopping a program (not cancelling!) which make the input look like
     * it reached its end at a specific point.
     */
    FINISHED,
    
    CANCELING,
    
    CANCELED,
    
    FAILED,

    RECONCILING;

    public boolean isTerminal() {
        return this == FINISHED || this == CANCELED || this == FAILED;
    }
}

Execution.deploy()

  • 对Execution进行部署
  • 更新Execution状态,将当前Execution的状态由SCHEDULED更新为DEPLOYING,即由已调度状态更新为部署中

    transitionState(previous, DEPLOYING)
  • INFO日志输出:部署哪一个Execution到哪一台机器上

    LOG.info(String.format("Deploying %s (attempt #%d) to %s", 
    13:11:55,910 INFO  [flink-akka.actor.default-dispatcher-3] org.apache.flink.runtime.executiongraph.Execution.deploy(Execution.java:599)      - Deploying Source: Socket Stream -> Flat Map -> Map (1/1) (attempt #0) to localhost
  • 构建TaskDeploymentDescriptor对象,该对象引用Task实例Execution的id,slot(槽位),就可以确定Execution在哪个slot上运行

    final TaskDeploymentDescriptor deployment = vertex.createDeploymentDescriptor(
                attemptId,
                slot,
                taskRestore,
                attemptNumber);
  • slot得到TaskManager

    final TaskManagerGateway taskManagerGateway = slot.getTaskManagerGateway();
  • TaskManager.submitTask 提交任务,参数为TaskDeploymentDescriptor

    final CompletableFuture<Acknowledge> submitResultFuture = taskManagerGateway.submitTask(deployment, rpcTimeout);
  • 接下来就交给TaskManager去处理了
  • 源码
/**
     * Deploys the execution to the previously assigned resource.
     *
     * @throws JobException if the execution cannot be deployed to the assigned resource
     */
    public void deploy() throws JobException {
        final LogicalSlot slot  = assignedResource;

        checkNotNull(slot, "In order to deploy the execution we first have to assign a resource via tryAssignResource.");

        // Check if the TaskManager died in the meantime
        // This only speeds up the response to TaskManagers failing concurrently to deployments.
        // The more general check is the rpcTimeout of the deployment call
        if (!slot.isAlive()) {
            throw new JobException("Target slot (TaskManager) for deployment is no longer alive.");
        }

        // make sure exactly one deployment call happens from the correct state
        // note: the transition from CREATED to DEPLOYING is for testing purposes only
        ExecutionState previous = this.state;
        if (previous == SCHEDULED || previous == CREATED) {
            if (!transitionState(previous, DEPLOYING)) {
                // race condition, someone else beat us to the deploying call.
                // this should actually not happen and indicates a race somewhere else
                throw new IllegalStateException("Cannot deploy task: Concurrent deployment call race.");
            }
        }
        else {
            // vertex may have been cancelled, or it was already scheduled
            throw new IllegalStateException("The vertex must be in CREATED or SCHEDULED state to be deployed. Found state " + previous);
        }

        if (this != slot.getPayload()) {
            throw new IllegalStateException(
                String.format("The execution %s has not been assigned to the assigned slot.", this));
        }

        try {

            // race double check, did we fail/cancel and do we need to release the slot?
            if (this.state != DEPLOYING) {
                slot.releaseSlot(new FlinkException("Actual state of execution " + this + " (" + state + ") does not match expected state DEPLOYING."));
                return;
            }

            if (LOG.isInfoEnabled()) {
                LOG.info(String.format("Deploying %s (attempt #%d) to %s", vertex.getTaskNameWithSubtaskIndex(),
                        attemptNumber, getAssignedResourceLocation().getHostname()));
            }

            final TaskDeploymentDescriptor deployment = vertex.createDeploymentDescriptor(
                attemptId,
                slot,
                taskRestore,
                attemptNumber);

            // null taskRestore to let it be GC'ed
            taskRestore = null;

            final TaskManagerGateway taskManagerGateway = slot.getTaskManagerGateway();

            final CompletableFuture<Acknowledge> submitResultFuture = taskManagerGateway.submitTask(deployment, rpcTimeout);

            submitResultFuture.whenCompleteAsync(
                (ack, failure) -> {
                    // only respond to the failure case
                    if (failure != null) {
                        if (failure instanceof TimeoutException) {
                            String taskname = vertex.getTaskNameWithSubtaskIndex() + " (" + attemptId + ')';

                            markFailed(new Exception(
                                "Cannot deploy task " + taskname + " - TaskManager (" + getAssignedResourceLocation()
                                    + ") not responding after a rpcTimeout of " + rpcTimeout, failure));
                        } else {
                            markFailed(failure);
                        }
                    }
                },
                executor);
        }
        catch (Throwable t) {
            markFailed(t);
            ExceptionUtils.rethrow(t);
        }
    }

TaskExecutor.submitTask

  • TaskManager中是由TaskExecutor来提交任务
  • 将外部化数据从BLOB存储加载回对象

    // re-integrate offloaded data:
            try {
                tdd.loadBigData(blobCacheService.getPermanentBlobService());
            } catch (IOException | ClassNotFoundException e) {
                throw new TaskSubmissionException("Could not re-integrate offloaded TaskDeploymentDescriptor data.", e);
            }
  • 从序列化的对象中反序列化(通过类加载),JobInformation,TaskInformation,用来构建TaskInformation,Task

        // deserialize the pre-serialized information
            final JobInformation jobInformation;
            final TaskInformation taskInformation;
            try {
                jobInformation = tdd.getSerializedJobInformation().deserializeValue(getClass().getClassLoader());
                taskInformation = tdd.getSerializedTaskInformation().deserializeValue(getClass().getClassLoader());
            } catch (IOException | ClassNotFoundException e) {
                throw new TaskSubmissionException("Could not deserialize the job or task information.", e);
            }
  • 指定Source中的拆分器,就是将不断产生数据的Source拆分给不同的Window做并行任务(RpcInputSplitProvider是其中的一种分配方式)

    InputSplitProvider inputSplitProvider = new RpcInputSplitProvider(
                jobManagerConnection.getJobManagerGateway(),
                taskInformation.getJobVertexId(),
                tdd.getExecutionAttemptId(),
                taskManagerConfiguration.getTimeout());
  • 构建任务状态管理器TaskStateManager

    final TaskStateManager taskStateManager = new TaskStateManagerImpl(
                jobId,
                tdd.getExecutionAttemptId(),
                localStateStore,
                taskRestore,
                checkpointResponder);
  • 构建任务Task

    Task task = new Task(
                jobInformation,
                taskInformation,
                tdd.getExecutionAttemptId(),
                tdd.getAllocationId(),
                tdd.getSubtaskIndex(),
                tdd.getAttemptNumber(),
                tdd.getProducedPartitions(),
                tdd.getInputGates(),
                tdd.getTargetSlotNumber(),
                taskExecutorServices.getMemoryManager(),
                taskExecutorServices.getIOManager(),
                taskExecutorServices.getNetworkEnvironment(),
                taskExecutorServices.getBroadcastVariableManager(),
                taskStateManager,
                taskManagerActions,
                inputSplitProvider,
                checkpointResponder,
                blobCacheService,
                libraryCache,
                fileCache,
                taskManagerConfiguration,
                taskMetricGroup,
                resultPartitionConsumableNotifier,
                partitionStateChecker,
                getRpcService().getExecutor());
  • 将任务增加到任务槽位中

                try {
                taskAdded = taskSlotTable.addTask(task);
            } catch (SlotNotFoundException | SlotNotActiveException e) {
                throw new TaskSubmissionException("Could not submit task.", e);
            }
  • 调用任务的启动线程,该方法会触发调用Task.run()函数,

            if (taskAdded) {
                task.startTaskThread();
    
                return CompletableFuture.completedFuture(Acknowledge.get());
            } else {
                final String message = "TaskManager already contains a task for id " +
                    task.getExecutionId() + '.';
    
                log.debug(message);
                throw new TaskSubmissionException(message);
            }
  • 源码
@Override
    public CompletableFuture<Acknowledge> submitTask(
            TaskDeploymentDescriptor tdd,
            JobMasterId jobMasterId,
            Time timeout) {

        try {
            final JobID jobId = tdd.getJobId();
            final JobManagerConnection jobManagerConnection = jobManagerTable.get(jobId);

            if (jobManagerConnection == null) {
                final String message = "Could not submit task because there is no JobManager " +
                    "associated for the job " + jobId + '.';

                log.debug(message);
                throw new TaskSubmissionException(message);
            }

            if (!Objects.equals(jobManagerConnection.getJobMasterId(), jobMasterId)) {
                final String message = "Rejecting the task submission because the job manager leader id " +
                    jobMasterId + " does not match the expected job manager leader id " +
                    jobManagerConnection.getJobMasterId() + '.';

                log.debug(message);
                throw new TaskSubmissionException(message);
            }

            if (!taskSlotTable.tryMarkSlotActive(jobId, tdd.getAllocationId())) {
                final String message = "No task slot allocated for job ID " + jobId +
                    " and allocation ID " + tdd.getAllocationId() + '.';
                log.debug(message);
                throw new TaskSubmissionException(message);
            }

            // re-integrate offloaded data:
            try {
                tdd.loadBigData(blobCacheService.getPermanentBlobService());
            } catch (IOException | ClassNotFoundException e) {
                throw new TaskSubmissionException("Could not re-integrate offloaded TaskDeploymentDescriptor data.", e);
            }

            // deserialize the pre-serialized information
            final JobInformation jobInformation;
            final TaskInformation taskInformation;
            try {
                jobInformation = tdd.getSerializedJobInformation().deserializeValue(getClass().getClassLoader());
                taskInformation = tdd.getSerializedTaskInformation().deserializeValue(getClass().getClassLoader());
            } catch (IOException | ClassNotFoundException e) {
                throw new TaskSubmissionException("Could not deserialize the job or task information.", e);
            }

            if (!jobId.equals(jobInformation.getJobId())) {
                throw new TaskSubmissionException(
                    "Inconsistent job ID information inside TaskDeploymentDescriptor (" +
                        tdd.getJobId() + " vs. " + jobInformation.getJobId() + ")");
            }

            TaskMetricGroup taskMetricGroup = taskManagerMetricGroup.addTaskForJob(
                jobInformation.getJobId(),
                jobInformation.getJobName(),
                taskInformation.getJobVertexId(),
                tdd.getExecutionAttemptId(),
                taskInformation.getTaskName(),
                tdd.getSubtaskIndex(),
                tdd.getAttemptNumber());

            InputSplitProvider inputSplitProvider = new RpcInputSplitProvider(
                jobManagerConnection.getJobManagerGateway(),
                taskInformation.getJobVertexId(),
                tdd.getExecutionAttemptId(),
                taskManagerConfiguration.getTimeout());

            TaskManagerActions taskManagerActions = jobManagerConnection.getTaskManagerActions();
            CheckpointResponder checkpointResponder = jobManagerConnection.getCheckpointResponder();

            LibraryCacheManager libraryCache = jobManagerConnection.getLibraryCacheManager();
            ResultPartitionConsumableNotifier resultPartitionConsumableNotifier = jobManagerConnection.getResultPartitionConsumableNotifier();
            PartitionProducerStateChecker partitionStateChecker = jobManagerConnection.getPartitionStateChecker();

            final TaskLocalStateStore localStateStore = localStateStoresManager.localStateStoreForSubtask(
                jobId,
                tdd.getAllocationId(),
                taskInformation.getJobVertexId(),
                tdd.getSubtaskIndex());

            final JobManagerTaskRestore taskRestore = tdd.getTaskRestore();

            final TaskStateManager taskStateManager = new TaskStateManagerImpl(
                jobId,
                tdd.getExecutionAttemptId(),
                localStateStore,
                taskRestore,
                checkpointResponder);

            Task task = new Task(
                jobInformation,
                taskInformation,
                tdd.getExecutionAttemptId(),
                tdd.getAllocationId(),
                tdd.getSubtaskIndex(),
                tdd.getAttemptNumber(),
                tdd.getProducedPartitions(),
                tdd.getInputGates(),
                tdd.getTargetSlotNumber(),
                taskExecutorServices.getMemoryManager(),
                taskExecutorServices.getIOManager(),
                taskExecutorServices.getNetworkEnvironment(),
                taskExecutorServices.getBroadcastVariableManager(),
                taskStateManager,
                taskManagerActions,
                inputSplitProvider,
                checkpointResponder,
                blobCacheService,
                libraryCache,
                fileCache,
                taskManagerConfiguration,
                taskMetricGroup,
                resultPartitionConsumableNotifier,
                partitionStateChecker,
                getRpcService().getExecutor());

            log.info("Received task {}.", task.getTaskInfo().getTaskNameWithSubtasks());

            boolean taskAdded;

            try {
                taskAdded = taskSlotTable.addTask(task);
            } catch (SlotNotFoundException | SlotNotActiveException e) {
                throw new TaskSubmissionException("Could not submit task.", e);
            }

            if (taskAdded) {
                task.startTaskThread();

                return CompletableFuture.completedFuture(Acknowledge.get());
            } else {
                final String message = "TaskManager already contains a task for id " +
                    task.getExecutionId() + '.';

                log.debug(message);
                throw new TaskSubmissionException(message);
            }
        } catch (TaskSubmissionException e) {
            return FutureUtils.completedExceptionally(e);
        }
    }

Task.run()

  • 先来了解一下任务的概念,Task表示在TaskManager上执行并行子任务。 Task包装Flink操作符(可以是用户函数)并运行它,提供所有必需的服务,例如使用输入数据,生成结果(中间结果分区)并与JobManager通信。
    Flink运算符(作为AbstractInvokable的子类实现,只有数据读取器,写入程序和某些事件回调。该任务将这些操作连接到网络堆栈和actor消息,并跟踪执行状态并处理异常。

任务不知道它们与其他任务的关系,或者它们是第一次执行任务还是重复尝试。 所有这些只有JobManager知道。 所有任务都知道它自己的可运行代码,任务的配置以及要使用和生成的中间结果的ID(如果有的话)。
每个任务由一个专用线程运行。

  • run()是引导任务并执行其代码的核心工作方法
  • 这里是Task的执行状态,前面是Executition的执行状态,需要区分开来,更新任务状态,由CREATED(已创建)到DEPLOYING(部署中)

    // ----------------------------
    //  Initial State transition
    // ----------------------------
    while (true) {
    ExecutionState current = this.executionState;
    if (current == ExecutionState.CREATED) {
        if (transitionState(ExecutionState.CREATED, ExecutionState.DEPLOYING)) {
            // success, we can start our work
            break;
        }
    }
    
  • 创建文件系统流为这个任务

    // activate safety net for task thread
    LOG.info("Creating FileSystem stream leak safety net for task {}", this);
    FileSystemSafetyNet.initializeSafetyNetForThread();
  • 加载用户程序jar文件,给当前Task使用

    // first of all, get a user-code classloader
    // this may involve downloading the job's JAR files and/or classes
    LOG.info("Loading JAR files for task {}.", this);
    
    userCodeClassLoader = createUserCodeClassloader();
    final ExecutionConfig executionConfig = serializedExecutionConfig.deserializeValue(userCodeClassLoader);
  • 注册网络追踪给这当前任务

    // ----------------------------------------------------------------
    // register the task with the network stack
    // this operation may fail if the system does not have enough
    // memory to run the necessary data exchanges
    // the registration must also strictly be undone
    // ----------------------------------------------------------------
    
    LOG.info("Registering task at network: {}.", this);
    
    network.registerTask(this);
    
  • 给当前任务构建运行环境

    Environment env = new RuntimeEnvironment(
        jobId,
        vertexId,
        executionId,
        executionConfig,
        taskInfo,
        jobConfiguration,
        taskConfiguration,
        userCodeClassLoader,
        memoryManager,
        ioManager,
        broadcastVariableManager,
        taskStateManager,
        accumulatorRegistry,
        kvStateRegistry,
        inputSplitProvider,
        distributedCacheEntries,
        producedPartitions,
        inputGates,
        network.getTaskEventDispatcher(),
        checkpointResponder,
        taskManagerConfig,
        metrics,
        this);
  • 加载并实例化任务的可调用代码(用户代码)

    // now load and instantiate the task's invokable code
    invokable = loadAndInstantiateInvokable(userCodeClassLoader, nameOfInvokableClass, env);
  • 更新当前任务状态,从DEPLOYING(部署中)更新为RUNNING(运行中)

        // switch to the RUNNING state, if that fails, we have been canceled/failed in the meantime
    if (!transitionState(ExecutionState.DEPLOYING, ExecutionState.RUNNING)) {
        throw new CancelTaskException();
    }
    
  • StreamTask.invoke()

    // run the invokable
    invokable.invoke();
  • 源码
/**
     * The core work method that bootstraps the task and executes its code.
     */
    @Override
    public void run() {

        // ----------------------------
        //  Initial State transition
        // ----------------------------
        while (true) {
            ExecutionState current = this.executionState;
            if (current == ExecutionState.CREATED) {
                if (transitionState(ExecutionState.CREATED, ExecutionState.DEPLOYING)) {
                    // success, we can start our work
                    break;
                }
            }
            else if (current == ExecutionState.FAILED) {
                // we were immediately failed. tell the TaskManager that we reached our final state
                notifyFinalState();
                if (metrics != null) {
                    metrics.close();
                }
                return;
            }
            else if (current == ExecutionState.CANCELING) {
                if (transitionState(ExecutionState.CANCELING, ExecutionState.CANCELED)) {
                    // we were immediately canceled. tell the TaskManager that we reached our final state
                    notifyFinalState();
                    if (metrics != null) {
                        metrics.close();
                    }
                    return;
                }
            }
            else {
                if (metrics != null) {
                    metrics.close();
                }
                throw new IllegalStateException("Invalid state for beginning of operation of task " + this + '.');
            }
        }

        // all resource acquisitions and registrations from here on
        // need to be undone in the end
        Map<String, Future<Path>> distributedCacheEntries = new HashMap<>();
        AbstractInvokable invokable = null;

        try {
            // ----------------------------
            //  Task Bootstrap - We periodically
            //  check for canceling as a shortcut
            // ----------------------------

            // activate safety net for task thread
            LOG.info("Creating FileSystem stream leak safety net for task {}", this);
            FileSystemSafetyNet.initializeSafetyNetForThread();

            blobService.getPermanentBlobService().registerJob(jobId);

            // first of all, get a user-code classloader
            // this may involve downloading the job's JAR files and/or classes
            LOG.info("Loading JAR files for task {}.", this);

            userCodeClassLoader = createUserCodeClassloader();
            final ExecutionConfig executionConfig = serializedExecutionConfig.deserializeValue(userCodeClassLoader);

            if (executionConfig.getTaskCancellationInterval() >= 0) {
                // override task cancellation interval from Flink config if set in ExecutionConfig
                taskCancellationInterval = executionConfig.getTaskCancellationInterval();
            }

            if (executionConfig.getTaskCancellationTimeout() >= 0) {
                // override task cancellation timeout from Flink config if set in ExecutionConfig
                taskCancellationTimeout = executionConfig.getTaskCancellationTimeout();
            }

            if (isCanceledOrFailed()) {
                throw new CancelTaskException();
            }

            // ----------------------------------------------------------------
            // register the task with the network stack
            // this operation may fail if the system does not have enough
            // memory to run the necessary data exchanges
            // the registration must also strictly be undone
            // ----------------------------------------------------------------

            LOG.info("Registering task at network: {}.", this);

            network.registerTask(this);

            // add metrics for buffers
            this.metrics.getIOMetricGroup().initializeBufferMetrics(this);

            // register detailed network metrics, if configured
            if (taskManagerConfig.getConfiguration().getBoolean(TaskManagerOptions.NETWORK_DETAILED_METRICS)) {
                // similar to MetricUtils.instantiateNetworkMetrics() but inside this IOMetricGroup
                MetricGroup networkGroup = this.metrics.getIOMetricGroup().addGroup("Network");
                MetricGroup outputGroup = networkGroup.addGroup("Output");
                MetricGroup inputGroup = networkGroup.addGroup("Input");

                // output metrics
                for (int i = 0; i < producedPartitions.length; i++) {
                    ResultPartitionMetrics.registerQueueLengthMetrics(
                        outputGroup.addGroup(i), producedPartitions[i]);
                }

                for (int i = 0; i < inputGates.length; i++) {
                    InputGateMetrics.registerQueueLengthMetrics(
                        inputGroup.addGroup(i), inputGates[i]);
                }
            }

            // next, kick off the background copying of files for the distributed cache
            try {
                for (Map.Entry<String, DistributedCache.DistributedCacheEntry> entry :
                        DistributedCache.readFileInfoFromConfig(jobConfiguration)) {
                    LOG.info("Obtaining local cache file for '{}'.", entry.getKey());
                    Future<Path> cp = fileCache.createTmpFile(entry.getKey(), entry.getValue(), jobId, executionId);
                    distributedCacheEntries.put(entry.getKey(), cp);
                }
            }
            catch (Exception e) {
                throw new Exception(
                    String.format("Exception while adding files to distributed cache of task %s (%s).", taskNameWithSubtask, executionId), e);
            }

            if (isCanceledOrFailed()) {
                throw new CancelTaskException();
            }

            // ----------------------------------------------------------------
            //  call the user code initialization methods
            // ----------------------------------------------------------------

            TaskKvStateRegistry kvStateRegistry = network.createKvStateTaskRegistry(jobId, getJobVertexId());

            Environment env = new RuntimeEnvironment(
                jobId,
                vertexId,
                executionId,
                executionConfig,
                taskInfo,
                jobConfiguration,
                taskConfiguration,
                userCodeClassLoader,
                memoryManager,
                ioManager,
                broadcastVariableManager,
                taskStateManager,
                accumulatorRegistry,
                kvStateRegistry,
                inputSplitProvider,
                distributedCacheEntries,
                producedPartitions,
                inputGates,
                network.getTaskEventDispatcher(),
                checkpointResponder,
                taskManagerConfig,
                metrics,
                this);

            // now load and instantiate the task's invokable code
            invokable = loadAndInstantiateInvokable(userCodeClassLoader, nameOfInvokableClass, env);

            // ----------------------------------------------------------------
            //  actual task core work
            // ----------------------------------------------------------------

            // we must make strictly sure that the invokable is accessible to the cancel() call
            // by the time we switched to running.
            this.invokable = invokable;

            // switch to the RUNNING state, if that fails, we have been canceled/failed in the meantime
            if (!transitionState(ExecutionState.DEPLOYING, ExecutionState.RUNNING)) {
                throw new CancelTaskException();
            }

            // notify everyone that we switched to running
            taskManagerActions.updateTaskExecutionState(new TaskExecutionState(jobId, executionId, ExecutionState.RUNNING));

            // make sure the user code classloader is accessible thread-locally
            executingThread.setContextClassLoader(userCodeClassLoader);

            // run the invokable
            invokable.invoke();

            // make sure, we enter the catch block if the task leaves the invoke() method due
            // to the fact that it has been canceled
            if (isCanceledOrFailed()) {
                throw new CancelTaskException();
            }

            // ----------------------------------------------------------------
            //  finalization of a successful execution
            // ----------------------------------------------------------------

            // finish the produced partitions. if this fails, we consider the execution failed.
            for (ResultPartition partition : producedPartitions) {
                if (partition != null) {
                    partition.finish();
                }
            }

            // try to mark the task as finished
            // if that fails, the task was canceled/failed in the meantime
            if (!transitionState(ExecutionState.RUNNING, ExecutionState.FINISHED)) {
                throw new CancelTaskException();
            }
        }
        catch (Throwable t) {

            // unwrap wrapped exceptions to make stack traces more compact
            if (t instanceof WrappingRuntimeException) {
                t = ((WrappingRuntimeException) t).unwrap();
            }

            // ----------------------------------------------------------------
            // the execution failed. either the invokable code properly failed, or
            // an exception was thrown as a side effect of cancelling
            // ----------------------------------------------------------------

            try {
                // check if the exception is unrecoverable
                if (ExceptionUtils.isJvmFatalError(t) ||
                        (t instanceof OutOfMemoryError && taskManagerConfig.shouldExitJvmOnOutOfMemoryError())) {

                    // terminate the JVM immediately
                    // don't attempt a clean shutdown, because we cannot expect the clean shutdown to complete
                    try {
                        LOG.error("Encountered fatal error {} - terminating the JVM", t.getClass().getName(), t);
                    } finally {
                        Runtime.getRuntime().halt(-1);
                    }
                }

                // transition into our final state. we should be either in DEPLOYING, RUNNING, CANCELING, or FAILED
                // loop for multiple retries during concurrent state changes via calls to cancel() or
                // to failExternally()
                while (true) {
                    ExecutionState current = this.executionState;

                    if (current == ExecutionState.RUNNING || current == ExecutionState.DEPLOYING) {
                        if (t instanceof CancelTaskException) {
                            if (transitionState(current, ExecutionState.CANCELED)) {
                                cancelInvokable(invokable);
                                break;
                            }
                        }
                        else {
                            if (transitionState(current, ExecutionState.FAILED, t)) {
                                // proper failure of the task. record the exception as the root cause
                                failureCause = t;
                                cancelInvokable(invokable);

                                break;
                            }
                        }
                    }
                    else if (current == ExecutionState.CANCELING) {
                        if (transitionState(current, ExecutionState.CANCELED)) {
                            break;
                        }
                    }
                    else if (current == ExecutionState.FAILED) {
                        // in state failed already, no transition necessary any more
                        break;
                    }
                    // unexpected state, go to failed
                    else if (transitionState(current, ExecutionState.FAILED, t)) {
                        LOG.error("Unexpected state in task {} ({}) during an exception: {}.", taskNameWithSubtask, executionId, current);
                        break;
                    }
                    // else fall through the loop and
                }
            }
            catch (Throwable tt) {
                String message = String.format("FATAL - exception in exception handler of task %s (%s).", taskNameWithSubtask, executionId);
                LOG.error(message, tt);
                notifyFatalError(message, tt);
            }
        }
        finally {
            try {
                LOG.info("Freeing task resources for {} ({}).", taskNameWithSubtask, executionId);

                // clear the reference to the invokable. this helps guard against holding references
                // to the invokable and its structures in cases where this Task object is still referenced
                this.invokable = null;

                // stop the async dispatcher.
                // copy dispatcher reference to stack, against concurrent release
                ExecutorService dispatcher = this.asyncCallDispatcher;
                if (dispatcher != null && !dispatcher.isShutdown()) {
                    dispatcher.shutdownNow();
                }

                // free the network resources
                network.unregisterTask(this);

                // free memory resources
                if (invokable != null) {
                    memoryManager.releaseAll(invokable);
                }

                // remove all of the tasks library resources
                libraryCache.unregisterTask(jobId, executionId);
                fileCache.releaseJob(jobId, executionId);
                blobService.getPermanentBlobService().releaseJob(jobId);

                // close and de-activate safety net for task thread
                LOG.info("Ensuring all FileSystem streams are closed for task {}", this);
                FileSystemSafetyNet.closeSafetyNetAndGuardedResourcesForThread();

                notifyFinalState();
            }
            catch (Throwable t) {
                // an error in the resource cleanup is fatal
                String message = String.format("FATAL - exception in resource cleanup of task %s (%s).", taskNameWithSubtask, executionId);
                LOG.error(message, t);
                notifyFatalError(message, t);
            }

            // un-register the metrics at the end so that the task may already be
            // counted as finished when this happens
            // errors here will only be logged
            try {
                metrics.close();
            }
            catch (Throwable t) {
                LOG.error("Error during metrics de-registration of task {} ({}).", taskNameWithSubtask, executionId, t);
            }
        }
    }

StreamTask.invoke()

  • 创建一个后端状态,stateBackend,此时为MemoryStateBackend

    stateBackend = createStateBackend();
  • 如果没有调置时间服务,就创建SystemProcessingTimeService,它将当前处理时间指定为调用的结果(时间)

                // if the clock is not already set, then assign a default TimeServiceProvider
            if (timerService == null) {
                ThreadFactory timerThreadFactory = new DispatcherThreadFactory(TRIGGER_THREAD_GROUP,
                    "Time Trigger for " + getName(), getUserCodeClassLoader());
    
                timerService = new SystemProcessingTimeService(this, getCheckpointLock(), timerThreadFactory);
            }
  • 当前流任务对应的操作链条,此处不同的流任务对应的操作链条不一样,像source流中,用户自定义的函数链不一样,这个operatorChain也不一样,这里以WordCount为例说明

    operatorChain = new OperatorChain<>(this, streamRecordWriters);
  • Source流中的操作链条 operatorChain.allOperators
  • headOperator = operatorChain.getHeadOperator()为StreamSource

    allOperators = {StreamOperator[3]@5784} 
    0 = {StreamMap@5793} 
    1 = {StreamFlatMap@5794} 
    2 = {StreamSource@5789} 
  • 任务初使化

    // task specific initialization
            init();
  • 在所有的operators是opened之前所有的触发器调度不能被执行,就是需要先把operator.open

                // we need to make sure that any triggers scheduled in open() cannot be
            // executed before all operators are opened
            synchronized (lock) {
    
                // both the following operations are protected by the lock
                // so that we avoid race conditions in the case that initializeState()
                // registers a timer, that fires before the open() is called.
    
                initializeState();
                openAllOperators();
            }
  • 调用具体任务的run()函数去处理,这里分不同的类型

    • Source 调的是SourceStreamTask.run()函数
    • Window 调的是OneInputStreamTask.run()函数

          // let the task do its work
              isRunning = true;
              run();
  • 源码
public final void invoke() throws Exception {

        boolean disposed = false;
        try {
            // -------- Initialize ---------
            LOG.debug("Initializing {}.", getName());

            asyncOperationsThreadPool = Executors.newCachedThreadPool();

            CheckpointExceptionHandlerFactory cpExceptionHandlerFactory = createCheckpointExceptionHandlerFactory();

            synchronousCheckpointExceptionHandler = cpExceptionHandlerFactory.createCheckpointExceptionHandler(
                getExecutionConfig().isFailTaskOnCheckpointError(),
                getEnvironment());

            asynchronousCheckpointExceptionHandler = new AsyncCheckpointExceptionHandler(this);

            stateBackend = createStateBackend();
            checkpointStorage = stateBackend.createCheckpointStorage(getEnvironment().getJobID());

            // if the clock is not already set, then assign a default TimeServiceProvider
            if (timerService == null) {
                ThreadFactory timerThreadFactory = new DispatcherThreadFactory(TRIGGER_THREAD_GROUP,
                    "Time Trigger for " + getName(), getUserCodeClassLoader());

                timerService = new SystemProcessingTimeService(this, getCheckpointLock(), timerThreadFactory);
            }

            operatorChain = new OperatorChain<>(this, streamRecordWriters);
            headOperator = operatorChain.getHeadOperator();

            // task specific initialization
            init();

            // save the work of reloading state, etc, if the task is already canceled
            if (canceled) {
                throw new CancelTaskException();
            }

            // -------- Invoke --------
            LOG.debug("Invoking {}", getName());

            // we need to make sure that any triggers scheduled in open() cannot be
            // executed before all operators are opened
            synchronized (lock) {

                // both the following operations are protected by the lock
                // so that we avoid race conditions in the case that initializeState()
                // registers a timer, that fires before the open() is called.

                initializeState();
                openAllOperators();
            }

            // final check to exit early before starting to run
            if (canceled) {
                throw new CancelTaskException();
            }

            // let the task do its work
            isRunning = true;
            run();

            // if this left the run() method cleanly despite the fact that this was canceled,
            // make sure the "clean shutdown" is not attempted
            if (canceled) {
                throw new CancelTaskException();
            }

            LOG.debug("Finished task {}", getName());

            // make sure no further checkpoint and notification actions happen.
            // we make sure that no other thread is currently in the locked scope before
            // we close the operators by trying to acquire the checkpoint scope lock
            // we also need to make sure that no triggers fire concurrently with the close logic
            // at the same time, this makes sure that during any "regular" exit where still
            synchronized (lock) {
                // this is part of the main logic, so if this fails, the task is considered failed
                closeAllOperators();

                // make sure no new timers can come
                timerService.quiesce();

                // only set the StreamTask to not running after all operators have been closed!
                // See FLINK-7430
                isRunning = false;
            }

            // make sure all timers finish
            timerService.awaitPendingAfterQuiesce();

            LOG.debug("Closed operators for task {}", getName());

            // make sure all buffered data is flushed
            operatorChain.flushOutputs();

            // make an attempt to dispose the operators such that failures in the dispose call
            // still let the computation fail
            tryDisposeAllOperators();
            disposed = true;
        }
        finally {
            // clean up everything we initialized
            isRunning = false;

            // Now that we are outside the user code, we do not want to be interrupted further
            // upon cancellation. The shutdown logic below needs to make sure it does not issue calls
            // that block and stall shutdown.
            // Additionally, the cancellation watch dog will issue a hard-cancel (kill the TaskManager
            // process) as a backup in case some shutdown procedure blocks outside our control.
            setShouldInterruptOnCancel(false);

            // clear any previously issued interrupt for a more graceful shutdown
            Thread.interrupted();

            // stop all timers and threads
            tryShutdownTimerService();

            // stop all asynchronous checkpoint threads
            try {
                cancelables.close();
                shutdownAsyncThreads();
            }
            catch (Throwable t) {
                // catch and log the exception to not replace the original exception
                LOG.error("Could not shut down async checkpoint threads", t);
            }

            // we must! perform this cleanup
            try {
                cleanup();
            }
            catch (Throwable t) {
                // catch and log the exception to not replace the original exception
                LOG.error("Error during cleanup of stream task", t);
            }

            // if the operators were not disposed before, do a hard dispose
            if (!disposed) {
                disposeAllOperators();
            }

            // release the output resources. this method should never fail.
            if (operatorChain != null) {
                // beware: without synchronization, #performCheckpoint() may run in
                //         parallel and this call is not thread-safe
                synchronized (lock) {
                    operatorChain.releaseOutputs();
                }
            }
        }
    }

SourceStreamTask.run()

  • headOperator,会依次从StreamSource.operatorChain中调用(StreamSource,StreamFlatMap,StreamMap),这个就是链式调用,把这一个类型的任务,可以依次调用执行对应的operator,不需要每次一次operator输出中间结果
  • StreamSource操作会调用SocketTextStreamFunction.run()函数来处理
  • 源码
    protected void run() throws Exception {
        headOperator.run(getCheckpointLock(), getStreamStatusMaintainer());
    }

SocketTextStreamFunction.run()

  • 建立Source的Sorcket连接,读取流中的数据,每次读取8K的数据放到缓存中,再按行进行解析
  • 把一行数据放到ctx.collect(record);进行后续的处理
  • 此处调用的是NonTimestampContext.collect(record)
public void run(SourceContext<String> ctx) throws Exception {
        final StringBuilder buffer = new StringBuilder();
        long attempt = 0;

        while (isRunning) {

            try (Socket socket = new Socket()) {
                currentSocket = socket;

                LOG.info("Connecting to server socket " + hostname + ':' + port);
                socket.connect(new InetSocketAddress(hostname, port), CONNECTION_TIMEOUT_TIME);
                try (BufferedReader reader = new BufferedReader(new InputStreamReader(socket.getInputStream()))) {

                    char[] cbuf = new char[8192];
                    int bytesRead;
                    while (isRunning && (bytesRead = reader.read(cbuf)) != -1) {
                        buffer.append(cbuf, 0, bytesRead);
                        int delimPos;
                        while (buffer.length() >= delimiter.length() && (delimPos = buffer.indexOf(delimiter)) != -1) {
                            String record = buffer.substring(0, delimPos);
                            // truncate trailing carriage return
                            if (delimiter.equals("\n") && record.endsWith("\r")) {
                                record = record.substring(0, record.length() - 1);
                            }
                            ctx.collect(record);
                            buffer.delete(0, delimPos + delimiter.length());
                        }
                    }
                }
            }

            // if we dropped out of this loop due to an EOF, sleep and retry
            if (isRunning) {
                attempt++;
                if (maxNumRetries == -1 || attempt < maxNumRetries) {
                    LOG.warn("Lost connection to server socket. Retrying in " + delayBetweenRetries + " msecs...");
                    Thread.sleep(delayBetweenRetries);
                }
                else {
                    // this should probably be here, but some examples expect simple exists of the stream source
                    // throw new EOFException("Reached end of stream and reconnects are not enabled.");
                    break;
                }
            }
        }

        // collect trailing data
        if (buffer.length() > 0) {
            ctx.collect(buffer.toString());
        }
    }

RecordWriter.emit

  • numChannels 为并行度,即为DataStrea.setParallelism(2) 设置的并行度
  • channelSelector.selectChannels(record, numChannels),分区算法,给当前数据分区(分区是为了给下游并行计算使用,在这里是发给不同的Window,并行计算)
  • 调用KeyGroupStreamPartitioner.selectChannels具体的分区算法
  • 源码
    public void emit(T record) throws IOException, InterruptedException {
        emit(record, channelSelector.selectChannels(record, numChannels));
    }

KeyGroupStreamPartitioner.selectChannels

  • 分区实现KeyGroupRangeAssignment.assignKeyToParallelOperator(key, maxParallelism, numberOfOutputChannels);

        分区代码
    numberOfOutputChannels: 一共分为多少个分区,即并行度为多少
    maxParallelism:最大并行度,默认为128
    key:处理的数据,对应的key的值
    
    KeyGroupRangeAssignment.assignKeyToParallelOperator(key, maxParallelism, numberOfOutputChannels);
    
  • 源码
    @Override
    public int[] selectChannels(
        SerializationDelegate<StreamRecord<T>> record,
        int numberOfOutputChannels) {

        K key;
        try {
            key = keySelector.getKey(record.getInstance().getValue());
        } catch (Exception e) {
            throw new RuntimeException("Could not extract key from " + record.getInstance().getValue(), e);
        }
        returnArray[0] = KeyGroupRangeAssignment.assignKeyToParallelOperator(key, maxParallelism, numberOfOutputChannels);
        return returnArray;
    }

OneInputStreamTask.run()

  • StreamTask.run().run()函数调用,当为Window时调用OneInputStreamTask.run()
  • 调用StreamInputProcessor.processInput()函数
  • 源码
    protected void run() throws Exception {
        // cache processor reference on the stack, to make the code more JIT friendly
        final StreamInputProcessor<IN> inputProcessor = this.inputProcessor;

        while (running && inputProcessor.processInput()) {
            // all the work happens in the "processInput" method
        }
    }

StreamInputProcessor.processInput()

  • 调用BarrierTracker.getNextNonBlocked()得到一个元素(key,value)得值,也就是source进行flatMap,map 函数之后的数据,此时,还没有进行聚合操作,注意这里会得到
  • 此时的数据还没有进行分配给不同的Window,当Source有数据发送过来后,就一条一条调用streamOperator.processElement(record),即WindowOperator.processElement进行处理
public boolean processInput() throws Exception {
        if (isFinished) {
            return false;
        }
        if (numRecordsIn == null) {
            try {
                numRecordsIn = ((OperatorMetricGroup) streamOperator.getMetricGroup()).getIOMetricGroup().getNumRecordsInCounter();
            } catch (Exception e) {
                LOG.warn("An exception occurred during the metrics setup.", e);
                numRecordsIn = new SimpleCounter();
            }
        }

        while (true) {
            if (currentRecordDeserializer != null) {
                DeserializationResult result = currentRecordDeserializer.getNextRecord(deserializationDelegate);

                if (result.isBufferConsumed()) {
                    currentRecordDeserializer.getCurrentBuffer().recycleBuffer();
                    currentRecordDeserializer = null;
                }

                if (result.isFullRecord()) {
                    StreamElement recordOrMark = deserializationDelegate.getInstance();

                    if (recordOrMark.isWatermark()) {
                        // handle watermark
                        statusWatermarkValve.inputWatermark(recordOrMark.asWatermark(), currentChannel);
                        continue;
                    } else if (recordOrMark.isStreamStatus()) {
                        // handle stream status
                        statusWatermarkValve.inputStreamStatus(recordOrMark.asStreamStatus(), currentChannel);
                        continue;
                    } else if (recordOrMark.isLatencyMarker()) {
                        // handle latency marker
                        synchronized (lock) {
                            streamOperator.processLatencyMarker(recordOrMark.asLatencyMarker());
                        }
                        continue;
                    } else {
                        // now we can do the actual processing
                        StreamRecord<IN> record = recordOrMark.asRecord();
                        synchronized (lock) {
                            numRecordsIn.inc();
                            streamOperator.setKeyContextElement1(record);
                            streamOperator.processElement(record);
                        }
                        return true;
                    }
                }
            }

            final BufferOrEvent bufferOrEvent = barrierHandler.getNextNonBlocked();
            if (bufferOrEvent != null) {
                if (bufferOrEvent.isBuffer()) {
                    currentChannel = bufferOrEvent.getChannelIndex();
                    currentRecordDeserializer = recordDeserializers[currentChannel];
                    currentRecordDeserializer.setNextBuffer(bufferOrEvent.getBuffer());
                }
                else {
                    // Event received
                    final AbstractEvent event = bufferOrEvent.getEvent();
                    if (event.getClass() != EndOfPartitionEvent.class) {
                        throw new IOException("Unexpected event: " + event);
                    }
                }
            }
            else {
                isFinished = true;
                if (!barrierHandler.isEmpty()) {
                    throw new IllegalStateException("Trailing data in checkpoint barrier handler.");
                }
                return false;
            }
        }
    }

WindowOperator.processElement(StreamRecord element)

  • WindowOperator.processElement,给每一个WordWithCount(1,1) 这样的元素分配window,也就是确认每一个元素属于哪一个窗口,因为需要对同一个窗口的相同key进行聚合操作

    final Collection<W> elementWindows = windowAssigner.assignWindows(
                element.getValue(), element.getTimestamp(), windowAssignerContext);
  • 把当前元素增加到state中保存,add函数中会对相同key进行聚合操作(reduce),对同一个window中相同key进行求和就是在这个方法中进行的

    windowState.add(element.getValue());
  • triggerContext.onElement(element),对当前元素设置trigger,也就是当前元素的window在哪个时间点触发(结束的时间点),
    把当前元素的key,增加到InternalTimerServiceImpl.processingTimeTimersQueue中,每一条数据会加一次,加完后会去重,相当于Set,对相同Key的处理,

后面发送给Sink的数据,就是遍历这个processingTimeTimersQueue中的数据,当然,每次发送第一个元素,发送后,会把最后一个元素放到第一个元素

TriggerResult triggerResult = triggerContext.onElement(element);

public void processElement(StreamRecord<IN> element) throws Exception {
        final Collection<W> elementWindows = windowAssigner.assignWindows(
            element.getValue(), element.getTimestamp(), windowAssignerContext);

        //if element is handled by none of assigned elementWindows
        boolean isSkippedElement = true;

        final K key = this.<K>getKeyedStateBackend().getCurrentKey();

        if (windowAssigner instanceof MergingWindowAssigner) {
            MergingWindowSet<W> mergingWindows = getMergingWindowSet();

            for (W window: elementWindows) {

                // adding the new window might result in a merge, in that case the actualWindow
                // is the merged window and we work with that. If we don't merge then
                // actualWindow == window
                W actualWindow = mergingWindows.addWindow(window, new MergingWindowSet.MergeFunction<W>() {
                    @Override
                    public void merge(W mergeResult,
                            Collection<W> mergedWindows, W stateWindowResult,
                            Collection<W> mergedStateWindows) throws Exception {

                        if ((windowAssigner.isEventTime() && mergeResult.maxTimestamp() + allowedLateness <= internalTimerService.currentWatermark())) {
                            throw new UnsupportedOperationException("The end timestamp of an " +
                                    "event-time window cannot become earlier than the current watermark " +
                                    "by merging. Current watermark: " + internalTimerService.currentWatermark() +
                                    " window: " + mergeResult);
                        } else if (!windowAssigner.isEventTime() && mergeResult.maxTimestamp() <= internalTimerService.currentProcessingTime()) {
                            throw new UnsupportedOperationException("The end timestamp of a " +
                                    "processing-time window cannot become earlier than the current processing time " +
                                    "by merging. Current processing time: " + internalTimerService.currentProcessingTime() +
                                    " window: " + mergeResult);
                        }

                        triggerContext.key = key;
                        triggerContext.window = mergeResult;

                        triggerContext.onMerge(mergedWindows);

                        for (W m: mergedWindows) {
                            triggerContext.window = m;
                            triggerContext.clear();
                            deleteCleanupTimer(m);
                        }

                        // merge the merged state windows into the newly resulting state window
                        windowMergingState.mergeNamespaces(stateWindowResult, mergedStateWindows);
                    }
                });

                // drop if the window is already late
                if (isWindowLate(actualWindow)) {
                    mergingWindows.retireWindow(actualWindow);
                    continue;
                }
                isSkippedElement = false;

                W stateWindow = mergingWindows.getStateWindow(actualWindow);
                if (stateWindow == null) {
                    throw new IllegalStateException("Window " + window + " is not in in-flight window set.");
                }

                windowState.setCurrentNamespace(stateWindow);
                windowState.add(element.getValue());

                triggerContext.key = key;
                triggerContext.window = actualWindow;

                TriggerResult triggerResult = triggerContext.onElement(element);

                if (triggerResult.isFire()) {
                    ACC contents = windowState.get();
                    if (contents == null) {
                        continue;
                    }
                    emitWindowContents(actualWindow, contents);
                }

                if (triggerResult.isPurge()) {
                    windowState.clear();
                }
                registerCleanupTimer(actualWindow);
            }

            // need to make sure to update the merging state in state
            mergingWindows.persist();
        } else {
            for (W window: elementWindows) {

                // drop if the window is already late
                if (isWindowLate(window)) {
                    continue;
                }
                isSkippedElement = false;

                windowState.setCurrentNamespace(window);
                windowState.add(element.getValue());

                triggerContext.key = key;
                triggerContext.window = window;

                TriggerResult triggerResult = triggerContext.onElement(element);

                if (triggerResult.isFire()) {
                    ACC contents = windowState.get();
                    if (contents == null) {
                        continue;
                    }
                    emitWindowContents(window, contents);
                }

                if (triggerResult.isPurge()) {
                    windowState.clear();
                }
                registerCleanupTimer(window);
            }
        }

        // side output input event if
        // element not handled by any window
        // late arriving tag has been set
        // windowAssigner is event time and current timestamp + allowed lateness no less than element timestamp
        if (isSkippedElement && isElementLate(element)) {
            if (lateDataOutputTag != null){
                sideOutput(element);
            } else {
                this.numLateRecordsDropped.inc();
            }
        }
    }

InternalTimerServiceImpl.onProcessingTime

  • processingTimeTimersQueue(HeapPriorityQueueSet) 该对象中存储了所有的key,这些key是去重后,按处理顺序排序
  • processingTimeTimersQueue.peek() 取出第一条数据进行处理
  • processingTimeTimersQueue.poll();会移除第一条数据,并且,拿最后一条数据,放第1一个元素,导致,所有元素的处理顺序是,先处理第一个元素,然后,把最后一个元素放第一个,
    最后一个就置为空,再循环处理所有数据,相当于处理完第一个元素,处后从最后一个元素开始处理,一直处理到完成,举例
1 2 1 3 2 5 4
存为 1 2 3 5 4 
顺序就变为
 1
 4
 5
 3
 2
  • keyContext.setCurrentKey(timer.getKey());//设置当前的key,当前需要处理的
  • triggerTarget.onProcessingTime(timer);// 调用 WindowOperator.onProcessingTime(timer)处理

queue = {HeapPriorityQueueElement[129]@8184} 
 1 = {TimerHeapInternalTimer@12441} "Timer{timestamp=1551505439999, key=(1), namespace=TimeWindow{start=1551505380000, end=1551505440000}}"
 2 = {TimerHeapInternalTimer@12442} "Timer{timestamp=1551505439999, key=(2), namespace=TimeWindow{start=1551505380000, end=1551505440000}}"
 3 = {TimerHeapInternalTimer@12443} "Timer{timestamp=1551505439999, key=(3), namespace=TimeWindow{start=1551505380000, end=1551505440000}}"
 5 = {TimerHeapInternalTimer@12443} "Timer{timestamp=1551505439999, key=(3), namespace=TimeWindow{start=1551505380000, end=1551505440000}}"
 4 = {TimerHeapInternalTimer@12443} "Timer{timestamp=1551505439999, key=(3), namespace=TimeWindow{start=1551505380000, end=1551505440000}}"
  • 调用 WindowOperator.onProcessingTime(timer)处理当前key;

public void onProcessingTime(long time) throws Exception {
        // null out the timer in case the Triggerable calls registerProcessingTimeTimer()
        // inside the callback.
        nextTimer = null;

        InternalTimer<K, N> timer;

        while ((timer = processingTimeTimersQueue.peek()) != null && timer.getTimestamp() <= time) {
            processingTimeTimersQueue.poll();
            keyContext.setCurrentKey(timer.getKey());
            triggerTarget.onProcessingTime(timer);
        }

        if (timer != null && nextTimer == null) {
            nextTimer = processingTimeService.registerTimer(timer.getTimestamp(), this);
        }
    }

WindowOperator.onProcessingTime

  • triggerResult.isFire()// 当前元素对应的window已经可以发射了,即过了结束时间
  • windowState.get() //取出当前key对应的(key,value)此时已经是相同key聚合后的值
  • emitWindowContents(triggerContext.window, contents);//发送给Sink进行处理
public void onProcessingTime(InternalTimer<K, W> timer) throws Exception {
        triggerContext.key = timer.getKey();
        triggerContext.window = timer.getNamespace();

        MergingWindowSet<W> mergingWindows;

        if (windowAssigner instanceof MergingWindowAssigner) {
            mergingWindows = getMergingWindowSet();
            W stateWindow = mergingWindows.getStateWindow(triggerContext.window);
            if (stateWindow == null) {
                // Timer firing for non-existent window, this can only happen if a
                // trigger did not clean up timers. We have already cleared the merging
                // window and therefore the Trigger state, however, so nothing to do.
                return;
            } else {
                windowState.setCurrentNamespace(stateWindow);
            }
        } else {
            windowState.setCurrentNamespace(triggerContext.window);
            mergingWindows = null;
        }

        TriggerResult triggerResult = triggerContext.onProcessingTime(timer.getTimestamp());

        if (triggerResult.isFire()) {
            ACC contents = windowState.get();
            if (contents != null) {
                emitWindowContents(triggerContext.window, contents);
            }
        }

        if (triggerResult.isPurge()) {
            windowState.clear();
        }

        if (!windowAssigner.isEventTime() && isCleanupTime(triggerContext.window, timer.getTimestamp())) {
            clearAllState(triggerContext.window, windowState, mergingWindows);
        }

        if (mergingWindows != null) {
            // need to make sure to update the merging state in state
            mergingWindows.persist();
        }
    }

SingleInputGate

  • 中间数据处理流程(数据交互)
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.flink.runtime.io.network.partition.consumer;

import org.apache.flink.api.common.JobID;
import org.apache.flink.core.memory.MemorySegment;
import org.apache.flink.runtime.deployment.InputChannelDeploymentDescriptor;
import org.apache.flink.runtime.deployment.InputGateDeploymentDescriptor;
import org.apache.flink.runtime.deployment.ResultPartitionLocation;
import org.apache.flink.runtime.event.AbstractEvent;
import org.apache.flink.runtime.event.TaskEvent;
import org.apache.flink.runtime.executiongraph.ExecutionAttemptID;
import org.apache.flink.runtime.io.network.NetworkEnvironment;
import org.apache.flink.runtime.io.network.api.EndOfPartitionEvent;
import org.apache.flink.runtime.io.network.api.serialization.EventSerializer;
import org.apache.flink.runtime.io.network.buffer.Buffer;
import org.apache.flink.runtime.io.network.buffer.BufferPool;
import org.apache.flink.runtime.io.network.buffer.BufferProvider;
import org.apache.flink.runtime.io.network.buffer.NetworkBufferPool;
import org.apache.flink.runtime.io.network.partition.ResultPartitionID;
import org.apache.flink.runtime.io.network.partition.ResultPartitionType;
import org.apache.flink.runtime.io.network.partition.consumer.InputChannel.BufferAndAvailability;
import org.apache.flink.runtime.jobgraph.DistributionPattern;
import org.apache.flink.runtime.jobgraph.IntermediateDataSetID;
import org.apache.flink.runtime.jobgraph.IntermediateResultPartitionID;
import org.apache.flink.runtime.metrics.groups.TaskIOMetricGroup;
import org.apache.flink.runtime.taskmanager.TaskActions;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.IOException;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.BitSet;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Optional;
import java.util.Timer;

import static org.apache.flink.util.Preconditions.checkArgument;
import static org.apache.flink.util.Preconditions.checkNotNull;
import static org.apache.flink.util.Preconditions.checkState;

/**
 * An input gate consumes one or more partitions of a single produced intermediate result.
 *
 * <p>Each intermediate result is partitioned over its producing parallel subtasks; each of these
 * partitions is furthermore partitioned into one or more subpartitions.
 *
 * <p>As an example, consider a map-reduce program, where the map operator produces data and the
 * reduce operator consumes the produced data.
 *
 * <pre>{@code
 * +-----+              +---------------------+              +--------+
 * | Map | = produce => | Intermediate Result | <= consume = | Reduce |
 * +-----+              +---------------------+              +--------+
 * }</pre>
 *
 * <p>When deploying such a program in parallel, the intermediate result will be partitioned over its
 * producing parallel subtasks; each of these partitions is furthermore partitioned into one or more
 * subpartitions.
 *
 * <pre>{@code
 *                            Intermediate result
 *               +-----------------------------------------+
 *               |                      +----------------+ |              +-----------------------+
 * +-------+     | +-------------+  +=> | Subpartition 1 | | <=======+=== | Input Gate | Reduce 1 |
 * | Map 1 | ==> | | Partition 1 | =|   +----------------+ |         |    +-----------------------+
 * +-------+     | +-------------+  +=> | Subpartition 2 | | <==+    |
 *               |                      +----------------+ |    |    | Subpartition request
 *               |                                         |    |    |
 *               |                      +----------------+ |    |    |
 * +-------+     | +-------------+  +=> | Subpartition 1 | | <==+====+
 * | Map 2 | ==> | | Partition 2 | =|   +----------------+ |    |         +-----------------------+
 * +-------+     | +-------------+  +=> | Subpartition 2 | | <==+======== | Input Gate | Reduce 2 |
 *               |                      +----------------+ |              +-----------------------+
 *               +-----------------------------------------+
 * }</pre>
 *
 * <p>In the above example, two map subtasks produce the intermediate result in parallel, resulting
 * in two partitions (Partition 1 and 2). Each of these partitions is further partitioned into two
 * subpartitions -- one for each parallel reduce subtask.
 */
public class SingleInputGate implements InputGate {

end

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
55 1
|
7月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用合集之支持 MySQL 的并行复制吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
SQL 网络安全 API
实时计算 Flink版产品使用问题之使用ProcessTime进行窗口计算,并且有4台机器的时间提前了2个小时,会导致什么情况
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之在进行DWS层的实时聚合计算时,遇到多次更新同一个字段的情况,该如何处理
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
Java 流计算
Flink中异步AsyncIO的实现 (源码分析)
Flink中异步AsyncIO的实现 (源码分析)
|
7月前
|
SQL 消息中间件 关系型数据库
实时计算 Flink版产品使用合集之flink-cdc-oracle 可以并行读取吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
7月前
|
流计算
Flink CDC里假设我做widow计算使用ProcessTime计算
【1月更文挑战第23天】【1月更文挑战第113篇】Flink CDC里假设我做widow计算使用ProcessTime计算
228 45
|
消息中间件 分布式计算 Kafka
将Apache Flink任务实时消费Kafka窗口的计算改为MaxCompute
将Apache Flink任务实时消费Kafka窗口的计算改为MaxCompute
142 6
|
SQL 关系型数据库 MySQL
Flink CDC 现在支持mysql 的并行复制吗?
Flink CDC 现在支持mysql 的并行复制吗?
136 1
|
SQL 存储 Oracle
flink-cdc-oracle 可以并行读取吗
flink-cdc-oracle 可以并行读取吗, 同步1000万数据,我这边半天没同步完, 这个有什么优化策略吗?这个怎么设置先全量并行读,然后增量 是flink sql跑的?
112 1