开源自然语言处理工具包hanlp中CRF分词实现详解

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介:  CRF简介CRF是序列标注场景中常用的模型,比HMM能利用更多的特征,比MEMM更能抵抗标记偏置的问题。[gerative-discriminative.png] CRF训练这类耗时的任务,还是交给了用C++实现的CRF++。

 CRF简介

CRF是序列标注场景中常用的模型,比HMM能利用更多的特征,比MEMM更能抵抗标记偏置的问题。

[gerative-discriminative.png] 

CRF训练

这类耗时的任务,还是交给了用C++实现的CRF++。关于CRF++输出的CRF模型,请参考《CRF++模型格式说明》。 

CRF解码

解码采用维特比算法实现。并且稍有改进,用中文伪码与白话描述如下:

首先任何字的标签不仅取决于它自己的参数,还取决于前一个字的标签。但是第一个字前面并没有字,何来标签?所以第一个字的处理稍有不同,假设第0个字的标签为X,遍历X计算第一个字的标签,取分数最大的那一个。

如何计算一个字的某个标签的分数呢?某个字根据CRF模型提供的模板生成了一系列特征函数,这些函数的输出值乘以该函数的权值最后求和得出了一个分数。该分数只是“点函数”的得分,还需加上“边函数”的得分。边函数在本分词模型中简化为f(s,s),其中s’为前一个字的标签,s为当前字的标签。于是该边函数就可以用一个4*4的矩阵描述,相当于HMM中的转移概率。

实现了评分函数后,从第二字开始即可运用维特比后向解码,为所有字打上BEMS标签。 

实例

还是取经典的“商品和服务”为例,首先HanLPCRFSegment分词器将其拆分为一张表:

 

 1088cd91b908bd246812442ce245e201dc94410b

null表示分词器还没有对该字标注。

代码

上面说了这么多,其实我的实现非常简练:

93ad379f5b89a281995ea97833a9b70ab698af0b 

9709491694b9b15cf705b5502f5dd89339919e40 

2034a6a2fff22c293e50617d42bfba8cacb39d32 


标注结果

标注后将table打印出来:

1889d10113a2ad6c50452b640ee79addd7a87f17 


最终处理

 

BEMS该合并的合并,得到:

[商品/null, /null, 服务/null]

然后将词语送到词典中查询一下,没查到的暂时当作nx,并记下位置(因为这是个新词,为了表示它的特殊性,最后词性设为null),再次使用维特比标注词性:

[商品/n, /cc, 服务/vn]

新词识别

 

CRF对新词有很好的识别能力,比如:

CRFSegment segment = new CRFSegment();

segment.enablePartOfSpeechTagging(true);

System.out.println(segment.seg("你看过穆赫兰道吗"));

输出

 

CRF标注结果

  S   

  S   

  S   

  B   

  M   

  M   

  E   

  S   

[/rr, /v, /uguo, 穆赫兰道/null, /y]

 

null表示新词。

 


相关文章
|
30天前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
46 2
|
3月前
|
自然语言处理 算法 数据可视化
NLP-基于bertopic工具的新闻文本分析与挖掘
这篇文章介绍了如何使用Bertopic工具进行新闻文本分析与挖掘,包括安装Bertopic库、加载和预处理数据集、建立并训练主题模型、评估模型性能、分类新闻标题、调优聚类结果的详细步骤和方法。
NLP-基于bertopic工具的新闻文本分析与挖掘
|
3月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP-新闻文本分类】处理新闻文本分类所有开源解决方案汇总
汇总了多个用于新闻文本分类的开源解决方案,包括TextCNN、Bert、LSTM、CNN、Transformer以及多模型融合方法。
51 1
|
3月前
|
机器学习/深度学习 自然语言处理 PyTorch
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--6 提分方案
在讯飞英文学术论文分类挑战赛中的提分技巧和实现方法,包括数据增强、投票融合、伪标签等策略,以及加快模型训练的技巧,如混合精度训练和使用AdamW优化器等。
40 0
|
3月前
|
数据采集 机器学习/深度学习 存储
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–5 Bert 方案
在讯飞英文学术论文分类挑战赛中使用BERT模型进行文本分类的方法,包括数据预处理、模型微调技巧、长文本处理策略以及通过不同模型和数据增强技术提高准确率的过程。
39 0
|
3月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–4 机器学习LGB 方案
在讯飞英文学术论文分类挑战赛中使用LightGBM模型进行文本分类的方案,包括数据预处理、特征提取、模型训练及多折交叉验证等步骤,并提供了相关的代码实现。
48 0
|
3月前
|
数据采集 自然语言处理 机器学习/深度学习
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–3 TextCNN Fasttext 方案
讯飞英文学术论文分类挑战赛中使用TextCNN和FastText模型进行文本分类的方案,包括数据预处理、模型训练和对抗训练等步骤,并分享了模型调优的经验。
35 0
|
3月前
|
机器学习/深度学习 自然语言处理 数据挖掘
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--2 数据分析
讯飞英文学术论文分类挑战赛数据集的分析,包括数据加载、缺失值检查、标签分布、文本长度统计等内容,并总结了数据的基本情况。
22 0
|
3月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--1 赛后总结与分析
参与讯飞英文学术论文分类挑战赛的经验,包括使用的多种模型和技术,如TextCNN、FastText、LightGBM和BERT,以及提分策略和遇到的问题。
39 0
|
4月前
|
自然语言处理 PyTorch API
`transformers`库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,`transformers`库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过`pipeline()`函数方便地加载和使用,而`generate()`函数则是用于生成文本的核心函数。
`transformers`库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,`transformers`库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过`pipeline()`函数方便地加载和使用,而`generate()`函数则是用于生成文本的核心函数。

热门文章

最新文章