Replication+Sentinel
这套架构使用的是社区版本推出的原生高可用解决方案!
这里Sentinel的作用有三个:
监控:Sentinel 会不断的检查主服务器和从服务器是否正常运行。
通知:当被监控的某个Redis服务器出现问题,Sentinel通过API脚本向管理员或者其他的应用程序发送通知。
自动故障转移:当主节点不能正常工作时,Sentinel会开始一次自动的故障转移操作,它会将与失效主节点是主从关系的其中一个从节点升级为新的主节点,并且将其他的从节点指向新的主节点。
工作原理就是,当Master宕机的时候,Sentinel会选举出新的Master,并根据Sentinel中client-reconfig-script脚本配置的内容,去动态修改VIP(虚拟IP),将VIP(虚拟IP)指向新的Master。我们的客户端就连向指定的VIP即可!
缺陷:
(1)主从切换的过程中会丢数据
(2)Redis只能单点写,不能水平扩容
Proxy+Replication+Sentinel
这里的Proxy目前有两种选择:Codis和Twemproxy。我经历这套架构的时间为2015年,当时我好像咨询过我的主管为啥不用Codis和Redis官网的Redis Cluster。原因有二:
据说是因为Codis开源的比较晚,考虑到更换组件的成本问题。毕竟本来运行好好的东西,你再去换组件,风险是很大的。
Redis Cluster在2015年还是试用版,不保证会遇到什么问题,因此不敢尝试。
所以我没接触过Codis,之前一直用的是Twemproxy作为Proxy。
这里以Twemproxy为例说明
工作原理如下
前端使用Twemproxy+KeepAlived做代理,将其后端的多台Redis实例分片进行统一管理与分配
每一个分片节点的Slave都是Master的副本且只读
Sentinel持续不断的监控每个分片节点的Master,当Master出现故障且不可用状态时,Sentinel会通知/启动自动故障转移等动作
Sentinel 可以在发生故障转移动作后触发相应脚本(通过 client-reconfig-script 参数配置 ),脚本获取到最新的Master来修改Twemproxy配置
缺陷:
(1)部署结构超级复杂
(2)可扩展性差,进行扩缩容需要手动干预
(3)运维不方便
Redis Cluster
我经历这套架构的时间为2017年,在这个时间Redis Cluster已经很成熟了!你们在网上能查到的大部分缺点,在我接触到的时候基本已经解决!
比如没有完善的运维工具?可以参照一下搜狐出的CacheCloud。
比如没有公司在生产用过?我接触到的时候,百度贴吧,美团等大厂都用过了。
比如没有Release版?我接触到的时候距离Redis Cluster发布Release版已经很久。
而且毕竟是官网出的,肯定会一直维护、更新下去,未来必定会更加成熟、稳定。换句话说,Redis不倒,Redis Cluster就不会放弃维护。所以,我推荐还是这套架构!
工作原理如下
客户端与Redis节点直连,不需要中间Proxy层,直接连接任意一个Master节点
根据公式HASH_SLOT=CRC16(key) mod 16384,计算出映射到哪个分片上,然后Redis会去相应的节点进行操作
具有如下优点:
(1)无需Sentinel哨兵监控,如果Master挂了,Redis Cluster内部自动将Slave切换Master
(2)可以进行水平扩容
(3)支持自动化迁移,当出现某个Slave宕机了,那么就只有Master了,这时候的高可用性就无法很好的保证了,万一Master也宕机了,咋办呢? 针对这种情况,如果说其他Master有多余的Slave ,集群自动把多余的Slave迁移到没有Slave的Master 中。
缺点:
(1)批量操作是个坑
(2)资源隔离性较差,容易出现相互影响的情况。
在面试中如果碰到下列问题,如何应用上本篇的知识呢?先明确一点,我推荐的是Redis Cluster。
OK,开始举例说明
问题1:懂Redis事务么?
正常版:Redis事务是一些列redis命令的集合,blabla…
高调版: 我们在生产上采用的是Redis Cluster集群架构,不同的key是有可能分配在不同的Redis节点上的,在这种情况下Redis的事务机制是不生效的。其次,Redis事务不支持回滚操作,简直是鸡肋!所以基本不用!
问题2:Redis的多数据库机制,了解多少?
正常版:Redis支持多个数据库,并且每个数据库的数据是隔离的不能共享,单机下的redis可以支持16个数据库(db0 ~ db15)
高调版: 在Redis Cluster集群架构下只有一个数据库空间,即db0。因此,我们没有使用Redis的多数据库功能!
问题3:Redis集群机制中,你觉得有什么不足的地方吗?
正常版: 不知道
高调版: 假设我有一个key,对应的value是Hash类型的。如果Hash对象非常大,是不支持映射到不同节点的!只能映射到集群中的一个节点上!还有就是做批量操作比较麻烦!
问题4:懂Redis的批量操作么?
正常版: 懂一点。比如mset、mget操作等,blabla
高调版: 我们在生产上采用的是Redis Cluster集群架构,不同的key会划分到不同的slot中,因此直接使用mset或者mget等操作是行不通的。
问题5:那在Redis集群模式下,如何进行批量操作?
正常版:不知道
高调版:这个问题其实可以写一篇文章了,改天写。这里说一种有一个很简单的答法,足够面试用。即:
如果执行的key数量比较少,就不用mget了,就用串行get操作。如果真的需要执行的key很多,就使用Hashtag保证这些key映射到同一台Redis节点上。简单来说语法如下
对于key为{foo}.student1、{foo}.student2,{foo}student3,这类key一定是在同一个redis节点上。因为key中“{}”之间的字符串就是当前key的hash tags, 只有key中{ }中的部分才被用来做hash,因此计算出来的redis节点一定是同一个!
ps:如果你用的是Proxy分片集群架构,例如Codis这种,会将mget/mset的多个key拆分成多个命令发往不同得Redis实例,这里不多说。我推荐答的还是Redis Cluster。
问题6:你们有对Redis做读写分离么?
正常版:没有做,至于原因额。。。额。。。额。。没办法了,硬着头皮扯~
高调版:不做读写分离。我们用的是Redis Cluster的架构,是属于分片集群的架构。而Redis本身在内存上操作,不会涉及IO吞吐,即使读写分离也不会提升太多性能,Redis在生产上的主要问题是考虑容量,单机最多10-20G,key太多降低Redis性能.因此采用分片集群结构,已经能保证了我们的性能。其次,用上了读写分离后,还要考虑主从一致性,主从延迟等问题,徒增业务复杂度。