更多精彩内容参见云栖社区大数据频道https://yq.aliyun.com/big-data,此外,通过Maxcompute及其配套产品,大数据分析仅需几步,详情访问https://www.aliyun.com/product/odps。
Aggregator是MaxCompute-GRAPH作业中常用的feature之一,特别是解决机器学习问题时。MaxCompute-GRAPH中Aggregator用于汇总并处理全局信息。本文将详细介绍的Aggregator的执行机制、相关API,并以Kmeans Clustering为例子说明Aggregator的具体用法。
Aggregator机制
如图1所示,Aggregator的逻辑分两部分,一部分在所有Worker上执行,即分布式执行,另一部分只在AggregatorOwner所在Worker上执行,即单点。其中在所有Worker上执行的操作包括创建初始值及局部聚合,然后将局部聚合结果发送给AggregatorOwner所在Worker上。AggregatorOwner所在Worker上聚合普通Worker发送过来的局部聚合对象,得到全局聚合结果,然后判断迭代是否结束。全局聚合的结果会在下一轮超步分发给所有Worker,供下一轮迭代使用。
Aggregator的API
Aggregator共提供了五个API供用户实现。下面逐个介绍5个API的调用时机及常规用途。
1. createStartupValue(context)
该API在所有Worker上执行一次,调用时机是所有超步开始之前,通常用以初始化AggregatorValue。在第0轮超步中,调用WorkerContext.getLastAggregatedValue() 或ComputeContext.getLastAggregatedValue()可以获取该API初始化的AggregatorValue对象。
2. createInitialValue(context)
该API在所有Worker上每轮超步开始时调用一次,用以初始化本轮迭代所用的AggregatorValue。通常操作是通过WorkerContext.getLastAggregatedValue() 得到上一轮迭代的结果,然后执行部分初始化操作。
3. aggregate(value, item)
该API同样在所有Worker上执行,与上述API不同的是,该API由用户显示调用ComputeContext#aggregate(item)来触发,而上述两个API,则由框架自动调用。该API用以执行局部聚合操作,其中第一个参数value是本Worker在该轮超步已经聚合的结果(初始值是createInitialValue返回的对象),第二个参数是用户代码调用ComputeContext#aggregate(item)传入的参数。该API中通常用item来更新value实现聚合。所有aggregate执行完后,得到的value就是该Worker的局部聚合结果,然后由框架发送给AggregatorOwner所在的Worker。
4. merge(value, partial)
该API执行于AggregatorOwner所在Worker,用以合并各Worker局部聚合的结果,达到全局聚合对象。与aggregate类似,value是已经聚合的结果,而partial待聚合的对象,同样用partial更新value。
假定有3个worker,分别是w0、w1、w2,其局部聚合结果是p0、p1、p2。假定发送到AggregatorOwner所在Worker的顺序为p1、p0、p2。那么merge执行次序为,首先执行merge(p1, p0),这样p1和p0就聚合为p1',然后执行merge(p1', p2),p1'和p2聚合为p1'',而p1''即为本轮超步全局聚合的结果。
从上述示例可以看出,当只有一个worker时,不需要执行merge方法,也就是说merge()不会被调用。
5. terminate(context, value)
当AggregatorOwner所在Worker执行完merge()后,框架会调用terminate(context, value)执行最后的处理。其中第二个参数value,即为merge()最后得到全局聚合,在该方法中可以对全局聚合继续修改。执行完terminate()后,框架会将全局聚合对象分发给所有Worker,供下一轮超步使用。
terminate()方法的一个特殊之处在于,如果返回true,则整个作业就结束迭代,否则继续执行。在机器学习场景中,通常判断收敛后返回true以结束作业。
Kmeans Clustering示例
下面以典型的KmeansClustering作为示例,来看下Aggregator具体用法。附件有完整代码,这里我们逐个部分解析代码。
1. GraphLoader部分
GraphLoader部分用以加载输入表,并转换为图的点或边。这里我们输入表的每行数据为一个样本,一个样本构造一个点,并用Vertex的value来存放样本。
我们首先定义一个Writable类KmeansValue作为Vertex的value类型。
public static class KmeansValue implements Writable {
DenseVector sample;
public KmeansValue() {
}
public KmeansValue(DenseVector v) {
this.sample = v;
}
@Override
public void write(DataOutput out) throws IOException {
wirteForDenseVector(out, sample);
}
@Override
public void readFields(DataInput in) throws IOException {
sample = readFieldsForDenseVector(in);
}
}
KmeansValue中封装一个DenseVector对象来存放一个样本,这里DenseVector类型来自matrix-toolkits-java,而wirteForDenseVector()及readFieldsForDenseVector()用以实现序列化及反序列化,可参见附件中的完整代码。
我们自定义的KmeansReader代码如下:
public static class KmeansReader extends
GraphLoader<LongWritable, KmeansValue, NullWritable, NullWritable> {
@Override
public void load(
LongWritable recordNum,
WritableRecord record,
MutationContext<LongWritable, KmeansValue, NullWritable, NullWritable> context)
throws IOException {
KmeansVertex v = new KmeansVertex();
v.setId(recordNum);
int n = record.size();
DenseVector dv = new DenseVector(n);
for (int i = 0; i < n; i++) {
dv.set(i, ((DoubleWritable)record.get(i)).get());
}
v.setValue(new KmeansValue(dv));
context.addVertexRequest(v);
}
}
KmeansReader中,每读入一行数据(一个Record)创建一个点,这里用recordNum作为点的ID,将record内容转换成DenseVector对象并封装进VertexValue中。
2. Vertex部分
自定义的KmeansVertex代码如下。逻辑非常简单,每轮迭代要做的事情就是将自己维护的样本执行局部聚合。具体逻辑参见下面Aggregator的实现。
public static class KmeansVertex extends
Vertex<LongWritable, KmeansValue, NullWritable, NullWritable> {
@Override
public void compute(
ComputeContext<LongWritable, KmeansValue, NullWritable, NullWritable> context,
Iterable<NullWritable> messages) throws IOException {
context.aggregate(getValue());
}
}
3. Aggregator部分
整个Kmeans的主要逻辑集中在Aggregator中。首先是自定义的KmeansAggrValue,用以维护要聚合及分发的内容。
public static class KmeansAggrValue implements Writable {
DenseMatrix centroids;
DenseMatrix sums; // used to recalculate new centroids
DenseVector counts; // used to recalculate new centroids
@Override
public void write(DataOutput out) throws IOException {
wirteForDenseDenseMatrix(out, centroids);
wirteForDenseDenseMatrix(out, sums);
wirteForDenseVector(out, counts);
}
@Override
public void readFields(DataInput in) throws IOException {
centroids = readFieldsForDenseMatrix(in);
sums = readFieldsForDenseMatrix(in);
counts = readFieldsForDenseVector(in);
}
}
KmeansAggrValue中维护了三个对象,其中centroids是当前的K个中心点,假定样本是m维的话,centroids就是一个K*m的矩阵。sums是和centroids大小一样的矩阵,每个元素记录了到特定中心点最近的样本特定维之和,例如sums(i,j)是到第i个中心点最近的样本的第j维度之和。
counts是个K维的向量,记录到每个中心点距离最短的样本个数。sums和counts一起用以计算新的中心点,也是要聚合的主要内容。
接下来是自定义的Aggregator实现类KmeansAggregator,我们按照上述API的顺序逐个看其实现。
首先是createStartupValue().
public static class KmeansAggregator extends Aggregator<KmeansAggrValue> {
public KmeansAggrValue createStartupValue(WorkerContext context) throws IOException {
KmeansAggrValue av = new KmeansAggrValue();
byte[] centers = context.readCacheFile("centers");
String lines[] = new String(centers).split("\n");
int rows = lines.length;
int cols = lines[0].split(",").length; // assumption rows >= 1
av.centroids = new DenseMatrix(rows, cols);
av.sums = new DenseMatrix(rows, cols);
av.sums.zero();
av.counts = new DenseVector(rows);
av.counts.zero();
for (int i = 0; i < lines.length; i++) {
String[] ss = lines[i].split(",");
for (int j = 0; j < ss.length; j++) {
av.centroids.set(i, j, Double.valueOf(ss[j]));
}
}
return av;
}
我们在该方法中初始化一个KmeansAggrValue对象,然后从资源文件centers中读取初始中心点,并赋值给centroids。而sums和counts初始化为0。
接来下是createInitialValue()的实现:
@Override
public KmeansAggrValue createInitialValue(WorkerContext context)
throws IOException {
KmeansAggrValue av = (KmeansAggrValue)context.getLastAggregatedValue(0);
// reset for next iteration
av.sums.zero();
av.counts.zero();
return av;
}
该方法中,我们首先获取上一轮迭代的KmeansAggrValue,然后将sums和counts清零,其实是只保留了上一轮迭代出的centroids。
用以执行局部聚合的aggregate()实现如下:
@Override
public void aggregate(KmeansAggrValue value, Object item)
throws IOException {
DenseVector sample = ((KmeansValue)item).sample;
// find the nearest centroid
int min = findNearestCentroid(value.centroids, sample);
// update sum and count
for (int i = 0; i < sample.size(); i ++) {
value.sums.add(min, i, sample.get(i));
}
value.counts.add(min, 1.0d);
}
该方法中调用findNearestCentroid()(实现见附件)找到样本item欧拉距离最近的中心点索引,然后将其各个维度加到sums上,最后counts计数加1。
以上三个方法执行于所有worker上,实现局部聚合。接下来看下在AggregatorOwner所在Worker执行的全局聚合相关操作。
首先是merge的实现:
@Override
public void merge(KmeansAggrValue value, KmeansAggrValue partial)
throws IOException {
value.sums.add(partial.sums);
value.counts.add(partial.counts);
}
merge的实现逻辑很简单,就是把各个worker聚合出的sums和counts相加即可。
最后是terminate()的实现:
@Override
public boolean terminate(WorkerContext context, KmeansAggrValue value)
throws IOException {
// Calculate the new means to be the centroids (original sums)
DenseMatrix newCentriods = calculateNewCentroids(value.sums, value.counts, value.centroids);
// print old centroids and new centroids for debugging
System.out.println("\nsuperstep: " + context.getSuperstep() +
"\nold centriod:\n" + value.centroids + " new centriod:\n" + newCentriods);
boolean converged = isConverged(newCentriods, value.centroids, 0.05d);
System.out.println("superstep: " + context.getSuperstep() + "/"
+ (context.getMaxIteration() - 1) + " converged: " + converged);
if (converged || context.getSuperstep() == context.getMaxIteration() - 1) {
// converged or reach max iteration, output centriods
for (int i = 0; i < newCentriods.numRows(); i++) {
Writable[] centriod = new Writable[newCentriods.numColumns()];
for (int j = 0; j < newCentriods.numColumns(); j++) {
centriod[j] = new DoubleWritable(newCentriods.get(i, j));
}
context.write(centriod);
}
// true means to terminate iteration
return true;
}
// update centriods
value.centroids.set(newCentriods);
// false means to continue iteration
return false;
}
teminate()中首先根据sums和counts调用calculateNewCentroids()求平均计算出新的中心点。然后调用isConverged()根据新老中心点欧拉距离判断是否已经收敛。如果收敛或迭代次数达到最大数,则将新的中心点输出并返回true,以结束迭代。否则更新中心点并返回false以继续迭代。其中calculateNewCentroids()和isConverged()的实现见附件。
4. main方法
main方法用以构造GraphJob,然后设置相应配置,并提交作业。代码如下:
public static void main(String[] args) throws IOException {
if (args.length < 2)
printUsage();
GraphJob job = new GraphJob();
job.setGraphLoaderClass(KmeansReader.class);
job.setRuntimePartitioning(false);
job.setVertexClass(KmeansVertex.class);
job.setAggregatorClass(KmeansAggregator.class);
job.addInput(TableInfo.builder().tableName(args[0]).build());
job.addOutput(TableInfo.builder().tableName(args[1]).build());
// default max iteration is 30
job.setMaxIteration(30);
if (args.length >= 3)
job.setMaxIteration(Integer.parseInt(args[2]));
long start = System.currentTimeMillis();
job.run();
System.out.println("Job Finished in "
+ (System.currentTimeMillis() - start) / 1000.0 + " seconds");
}
这里需要注意的是job.setRuntimePartitioning(false),设置为false后,各个worker加载的数据不再根据Partitioner重新分区,即谁加载的数据谁维护。
总结
本文介绍了MaxCompute-GRAPH中的Aggregator机制,API含义以及示例Kmeans Clustering。总的来说,Aggregator基本步骤是,
1)每个worker启动时执行createStartupValue用以创建AggregatorValue;
2)每轮迭代开始前,每个worker执行createInitialValue来初始化本轮的AggregatorValue;
3)一轮迭代中每个点通过context.aggregate()来执行aggregate()实现worker内的局部迭代;
4)每个Worker将局部迭代结果发送给AggregatorOwner所在的Worker;
5)AggregatorOwner所在worker执行多次merge,实现全局聚合;
6)AggregatorOwner所在Worker执行terminate用以对全局聚合结果做处理并决定是否结束迭代。