【资料下载】Python第四讲——使用IPython/Jupyter Notebook与日志服务玩转超大规模数据分析与可视化

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: IPython/Jupyter Notebook非常流行,但随着数据量越来越大(例如几百亿条电商平台访问日志),如何继续保持灵活的交互式分析,是一个挑战。阿里云日志服务作为阿里商业操作系统的智能运维平台,无需开发就能快捷完成海量日志数据的采集、消费、投递以及查询分析等功能。

IPython/Jupyter Notebook非常流行,但随着数据量越来越大(例如几百亿条电商平台访问日志),如何继续保持灵活的交互式分析,是一个挑战。阿里云日志服务作为阿里商业操作系统的智能运维平台,无需开发就能快捷完成海量日志数据的采集、消费、投递以及查询分析等功能。这里介绍如何借助日志服务对IPython/Jupyter扩展的功能,用Python对海量数据进行深度加工(ETL)、交互式分析(通过SQL、DataFrame)、机器学习与可视化等。

_2019_02_21_9_10_47

直播讲师:丁来强(成喆)——阿里高级技术专家,从事阿里云日志服务相关的产品与研发工作,擅长AIOps/SecOps的大数据分析平台构建与场景落地,擅长C++与Python语言等。
PyCon历届讲师,曾经在中国PyCon2015、2016与2018分享过7场/6个不同议题,覆盖Jupyter扩展、大数据分析可视化、工作流调度、函数式、设计模式、Python核心语言等方面,广受好评。

欢迎加入python技术进阶钉群收看直播及往期回顾


_2019_01_15_10_28_39


或点击链接:http://tb.cn/UQkRRHw

PPT下载:https://yq.aliyun.com/download/3322
直播回顾:https://yq.aliyun.com/live/875

相关实践学习
通过日志服务实现云资源OSS的安全审计
本实验介绍如何通过日志服务实现云资源OSS的安全审计。
相关文章
|
3月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
452 0
|
3月前
|
存储 数据可视化 BI
Python可视化应用——学生成绩分布柱状图展示
本程序使用Python读取Excel中的学生成绩数据,统计各分数段人数,并通过Matplotlib库绘制柱状图展示成绩分布。同时计算最高分、最低分及平均分,实现成绩可视化分析。
247 0
|
2月前
|
数据采集 数据可视化 API
驱动业务决策:基于Python的App用户行为分析与可视化方案
驱动业务决策:基于Python的App用户行为分析与可视化方案
|
3月前
|
存储 数据采集 数据可视化
Python自动化分析知网文献:爬取、存储与可视化
Python自动化分析知网文献:爬取、存储与可视化
|
4月前
|
数据采集 Web App开发 自然语言处理
利用Python构建今日头条搜索结果的可视化图表
利用Python构建今日头条搜索结果的可视化图表
|
4月前
|
缓存 网络协议
(问题日志)解决因代理设置导致的npm包ECONNREFUSED下载错误
在AIoT-IDE中使用`npm i`安装依赖时,若出现长时间无响应及ECONNREFUSED错误,可能是网络配置或代理冲突导致。通过指定镜像源与日志排查,确认为旧代理配置遗留问题。解决步骤包括:验证镜像源可用性、清除npm缓存、检查并更新代理配置。最终重新设置正确代理端口后,依赖安装恢复正常。
142 2
|
6月前
|
数据采集 数据可视化 数据挖掘
基于Python的App流量大数据分析与可视化方案
基于Python的App流量大数据分析与可视化方案
|
7月前
|
数据可视化 前端开发 数据挖掘
使用Folium在Python中进行地图可视化:全面指南
Folium是基于Python的交互式地图可视化库,依托Leaflet.js实现地理空间数据展示。本文从安装、基础使用到高级功能全面解析Folium:包括创建地图、添加标记、保存文件,以及绘制热力图、多边形和Choropleth地图等高级操作。通过展示北京市景点与全球地震数据的实际案例,结合性能优化、自定义样式和交互性增强技巧,帮助用户掌握Folium的核心功能与应用潜力,为数据分析提供直观支持。
623 3
|
7月前
|
机器学习/深度学习 数据采集 数据可视化
Python/Anaconda双方案加持!Jupyter Notebook全平台下载教程来袭
Jupyter Notebook 是一款交互式编程与数据科学分析工具,支持40多种编程语言,广泛应用于机器学习、数据清洗和学术研究。其核心优势包括实时执行代码片段、支持Markdown文档与LaTeX公式混排,并可导出HTML/PDF/幻灯片等格式。本文详细介绍了Jupyter Notebook的软件定位、特性、安装方案(Anaconda集成环境与原生Python+PIP安装)、首次运行配置及常见问题解决方案,帮助用户快速上手并高效使用该工具。
|
10月前
|
机器学习/深度学习 数据采集 DataWorks
数据分析经典案例重现:使用DataWorks Notebook 实现Kaggle竞赛之房价预测,成为数据分析大神!
Python是目前当之无愧的数据分析第一语言,大量的数据科学家使用Python来完成各种各样的数据科学任务。本文以Kaggle竞赛中的房价预测为例,结合DataWorks Notebook,完成数据加载、数据探索、数据可视化、数据清洗、特征分析、特征处理、机器学习、回归预测等步骤,主要Python工具是Pandas和SKLearn。本文中仅仅使用了线性回归这一最基本的机器学习模型,读者可以自行尝试其他更加复杂模型,比如随机森林、支持向量机、XGBoost等。

推荐镜像

更多