云HBase Spark分析引擎对接云数据库POLARDB

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: HBase Spark分析引擎是云数据库HBase版提供的分析引擎,基于Spark提供的复杂分析、流式处理、机器学习的能力。Spark分析引擎可以对接阿里云的各种数据源,例如:云HBase数据、MongoDB、Phoenix等,同时也支持对接POLARDB数据库。

HBase Spark分析引擎云数据库HBase版提供的分析引擎,基于Spark提供的复杂分析、流式处理、机器学习的能力。Spark分析引擎可以对接阿里云的多种数据源,例如:云HBase数据库、MongoDB、Phoenix等,同时也支持对接云数据库POLARDB。POLARDB是阿里云自研的下一代关系型云数据库,100%兼容MySQL,性能最高是MySQL的6倍。本文主要介绍HBase Spark分析引擎如何对接云数据库POLARDB。

场景介绍

POLARDB中经常会存储一些维度表信息,例如:用户维度表信息,包含用户的ID,姓名,地址等信息。此类数据的特点是数据量小,不经常改变。
Spark 中经常会存在一些海量事实表数据用于数据的分析,例如用户的通话信息、交易信息等。此类数据的特点是数据量大、增量更新。用户需要在这类数据中统计、分析挖掘有价值的内容。
例如:用户事实表数据一般包含用户的ID信息,在Spark侧对事实表统计分析时,对分析的结果需要补齐用户的其他信息,例如姓名、地址等。
这时就可以通过Spark分析引擎直接和POLARDB的数据表做关联查询和统计分析,而不用担心搬迁POLARDB的数据,以及搬迁数据带来的数据同步问题和额外的维护工作量。
下面内容介绍在Spark分析引擎中如何对接云数据库POLARDB。

在Spark分析引擎中创建表

本文中的SQL样例可以运行在Spark分析引擎的SQL服务ThriftServer。
在Spark分析引擎中创建关联POLARDB表的语法如下:

create table jdbc_polordb
using org.apache.spark.sql.jdbc
options (
  driver 'com.mysql.jdbc.Driver',
  url 'jdbc:mysql://pc-xxx.rwlb.rds.aliyuncs.com:3306',
  dbtable 'testdb.test_table',
  user 'testuser',
  password 'xxx'
)

样例使用的是Spark的JDBC DataSource API。每个参数意义如下:
jdbc:mysql://pc-xxx.rwlb.rds.aliyuncs.com:3306:POLARDB的数据库地址,从POLARDB集群中获取,可以是集群地址,主地址或者SQL加速地址,对应下图中POLARDB的连接地址:
undefined
testdb.test_table:testdb是POLARDB中创建的数据库名称,test_table为创建的表名称。
userpassword分别对应登陆数据库的用户名和密码。

在Spark分析引擎中操作表

在Spark分析引擎中创建表后,可以直接在Spark分析引擎中操作POLARDB表。表的操作常用的有:查询表、插入数据、删除表。
1、查询样例:

select * from jdbc_polordb limit 5;
+-----+---------+--+
| id  |  name   |
+-----+---------+--+
| 9   | name9   |
| 15  | name15  |
| 9   | name99  |
| 28  | name28  |
| 15  | name15  |
+-----+---------+--+
select * from jdbc_polordb where id >= 96;
+------+-----------+--+
|  id  |   name    |
+------+-----------+--+
| 96   | name96    |
| 99   | name99    |
| 98   | name98    |
| 99   | name99    |
| 97   | name97    |
| 100  | name100   |
| 200  | testdata  |
+------+-----------+--+

2、插入数据样例:

insert into jdbc_polordb values(200, 'testdata');
+---------+--+
| Result  |
+---------+--+
+---------+--+
select * from jdbc_polordb where id=200;
+------+-----------+--+
|  id  |   name    |
+------+-----------+--+
| 200  | testdata  |
+------+-----------+--+

3、与其他表join样例:

select j.id, j.name from jdbc_polordb j join test_parquet t on j.id = t.id;
+-----+--------+--+
| id  |  name  |
+-----+--------+--+
| 1   | name1  |
| 3   | name3  |
| 5   | name5  |
+-----+--------+--+

4、 删除表样例(Spark侧删除表不会删除POLARDB中的表):

drop table jdbc_polordb;
+---------+--+
| Result  |
+---------+--+
+---------+--+

Spark分析引擎查询POLARDB性能优化

Spark分析引擎中查询POLARDB表性能方面提供了如下的优化能力:
1、 列值裁剪
根据用户的SQL语句在POLARDB中获取需要字段的数据。例如,POLARDB中的表test_table有四个字段,col1、col2、col3、col4。 Spark中的查询语句为:

select col1, col3 from jdbc_polordb

则Spark分析引擎只会获取表test_table中col1和col3两个字段对应的数据,减少数据量的获取。

2、 过滤条件下推
Spark分析引擎支持常用的过滤条件下推,例如:=,>,>=,<,<=,is null, is not null,like xx%, like %xx, like %xx%,in,not。查询SQL如:

select * from jdbc_polordb where id >= 96;
select * from jdbc_polordb where id=200;

Spark分析引擎会把过滤条件id=200,id>=96下推到POLARDB,减少数据量的获取,提升查询性能。

3、分区并行读取
在Spark分析引擎中创建JDBC表时可以指定分区,查询会按照分区字段和分区数并发查询。语法如下:

create table jdbc_polordb
using org.apache.spark.sql.jdbc
options (
 driver 'com.mysql.jdbc.Driver',
 url 'jdbc:mysql://pc-xxx.rwlb.rds.aliyuncs.com:3306',
 dbtable 'testdb.test_table',
 user 'testuser',
 password 'xxx',
 partitionColumn 'id',
 lowerBound '20',
 upperBound '80',
 numPartitions '5'
)

partitionColumn:是需要分区的字段名称,对应POLARDB中表的字段;
lowerBound:为对应字段的下界值;
upperBound:为对应字段的上界值;
numPartitions:为分区数。
在此基础上执行select * from jdbc_polordb,Spark分析引擎会下发5个并行的Job查询POLARDB数据库。下图为Spark分析引擎的并行Job:
ss

总结

Spark分析引擎作为大数据计算框架可以与云数据库POLARDB很容易结合在一起,在Spark分析引擎中非常便捷地关联、分析POLARDB的数据。本文简单介绍HBase Spark分析引擎与云数据库POLARDB结合的常用操作。更多内容欢迎大家使用HBase Spark分析引擎云数据库POLARDB

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
5月前
|
机器学习/深度学习 分布式计算 算法
Spark快速大数据分析PDF下载读书分享推荐
《Spark快速大数据分析》适合初学者,聚焦Spark实用技巧,同时深入核心概念。作者团队来自Databricks,书中详述Spark 3.0新特性,结合机器学习展示大数据分析。Spark是大数据分析的首选工具,本书助你驾驭这一利器。[PDF下载链接][1]。 ![Spark Book Cover][2] [1]: https://zhangfeidezhu.com/?p=345 [2]: https://i-blog.csdnimg.cn/direct/6b851489ad1944548602766ea9d62136.png#pic_center
189 1
Spark快速大数据分析PDF下载读书分享推荐
|
2月前
|
关系型数据库 MySQL 分布式数据库
零基础教你用云数据库PolarDB搭建企业网站,完成就送桌面收纳桶!
零基础教你用云数据库PolarDB搭建企业网站,完成就送桌面收纳桶,邀请好友完成更有机会获得​小米Watch S3、小米体重称​等诸多好礼!
零基础教你用云数据库PolarDB搭建企业网站,完成就送桌面收纳桶!
|
4月前
|
关系型数据库 MySQL 分布式数据库
PolarDB 与传统数据库的性能对比分析
【8月更文第27天】随着云计算技术的发展,越来越多的企业开始将数据管理和存储迁移到云端。阿里云的 PolarDB 作为一款兼容 MySQL 和 PostgreSQL 的关系型数据库服务,提供了高性能、高可用和弹性伸缩的能力。本文将从不同角度对比 PolarDB 与本地部署的传统数据库(如 MySQL、PostgreSQL)在性能上的差异。
319 1
|
1月前
|
关系型数据库 分布式数据库 数据库
PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具
在数字化时代,企业面对海量数据的挑战,PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具。它不仅支持高速数据读写,还通过数据分区、索引优化等策略提升分析效率,适用于电商、金融等多个行业,助力企业精准决策。
36 4
|
2月前
|
SQL 分布式计算 Serverless
EMR Serverless Spark:一站式全托管湖仓分析利器
本文根据2024云栖大会阿里云 EMR 团队负责人李钰(绝顶) 演讲实录整理而成
184 2
|
2月前
|
设计模式 数据采集 分布式计算
企业spark案例 —出租车轨迹分析
企业spark案例 —出租车轨迹分析
112 0
|
5月前
|
关系型数据库 Serverless 分布式数据库
微测评:云数据库PolarDB
体验并部署了《Serverless高可用架构》-PolarDB后,发现其相较于传统架构优势显著:零代码改造降低迁移门槛,极简易用提升开发效率,自适应弹性确保资源高效利用。
133 0
微测评:云数据库PolarDB
|
4月前
|
关系型数据库 MySQL 分布式数据库
PolarDB 并行查询问题之大数据量的实时分析查询挑战如何解决
PolarDB 并行查询问题之大数据量的实时分析查询挑战如何解决
41 2
|
4月前
|
关系型数据库 MySQL 分布式数据库
PolarDB 并行查询问题之帮助处理实时性分析查询如何解决
PolarDB 并行查询问题之帮助处理实时性分析查询如何解决
47 1
|
5月前
|
弹性计算 分布式计算 Serverless
全托管一站式大规模数据处理和分析Serverless平台 | EMR Serverless Spark 评测
【7月更文挑战第6天】全托管一站式大规模数据处理和分析Serverless平台 | EMR Serverless Spark 评测
23732 42