Tensorflow源码解析4 -- 图的节点 - Operation

简介: # 1 概述 上文讲述了TensorFlow的核心对象,计算图Graph。Graph包含两大成员,节点和边。节点即为计算算子Operation,边则为计算数据Tensor。由起始节点Source出发,按照Graph的拓扑顺序,依次执行节点的计算,即可完成整图的计算,最后结束于终止节点Sink,并输出计算结果。 本文会对节点Operation进行详细讲解。 # 2 前端节点数据

1 概述

上文讲述了TensorFlow的核心对象,计算图Graph。Graph包含两大成员,节点和边。节点即为计算算子Operation,边则为计算数据Tensor。由起始节点Source出发,按照Graph的拓扑顺序,依次执行节点的计算,即可完成整图的计算,最后结束于终止节点Sink,并输出计算结果。

本文会对节点Operation进行详细讲解。

2 前端节点数据结构

在Python前端中,Operation表示Graph的节点,Tensor表示Graph的边。Operation包含OpDef和NodeDef两个主要成员变量。其中OpDef描述了op的静态属性信息,例如op入参列表,出参列表等。而NodeDef则描述op的动态属性信息,例如op运行的设备信息,用户给op设置的name等。

先来看Operation的数据结构,只列出重要代码。

@tf_export("Operation")
class Operation(object):
  def __init__(self,
               node_def,
               g,
               inputs=None,
               output_types=None,
               control_inputs=None,
               input_types=None,
               original_op=None,
               op_def=None):
     # graph引用,通过它可以拿到Operation所注册到的Graph
     self._graph = g
    
    # inputs
    if inputs is None:
      inputs = []

    #  input types
    if input_types is None:
      input_types = [i.dtype.base_dtype for i in inputs]

    # control_input_ops
    control_input_ops = []
    
    # node_def和op_def是两个最关键的成员
    if not self._graph._c_graph:
      self._inputs_val = list(inputs)  # Defensive copy.
      self._input_types_val = input_types
      self._control_inputs_val = control_input_ops
      
      # NodeDef,深复制
      self._node_def_val = copy.deepcopy(node_def)
        
      # OpDef
      self._op_def_val = op_def
      
    # outputs输出
    self._outputs = [
        Tensor(self, i, output_type)
        for i, output_type in enumerate(output_types)
    ]

下面来看Operation的属性方法,通过属性方法我们可以拿到Operation的两大成员,即OpDef和NodeDef。

  @property
  def name(self):
    # Operation的name,注意要嵌套name_scope
    return self._node_def_val.name

  @property
  def _id(self):
    # Operation的唯一标示,id
    return self._id_value

  @property
  def device(self):
    # Operation的设备信息
    return self._node_def_val.device
    
  @property
  def graph(self):
    # graph引用
    return self._graph

  @property
  def node_def(self):
    # NodeDef成员,获取Operation的动态属性信息,例如Operation分配到的设备信息,Operation的name等
    return self._node_def_val

  @property
  def op_def(self):
    # OpDef,获取Operation的静态属性信息,例如Operation入参列表,出参列表等
    return self._op_def_val

3 后端节点数据结构

在C++后端中,Graph图也包含两部分,即边Edge和节点Node。同样,节点Node用来表示计算算子,而边Edge则表示计算数据或者Node间依赖关系。Node数据结构如下所示。

class Node {
 public:
    // NodeDef,节点算子Operation的信息,比如op分配到哪个设备上了等,运行时有可能变化。
      const NodeDef& def() const;
    
    // OpDef, 节点算子Operation的元数据,不会变的。比如Operation的入参个数,名字等
      const OpDef& op_def() const;
 private:
      // 输入边,传递数据给节点。可能有多条
      EdgeSet in_edges_;

      // 输出边,节点计算后得到的数据。可能有多条
      EdgeSet out_edges_;
}

节点Node中包含的主要数据有输入边和输出边的集合,从而能够由Node找到跟他关联的所有边。Node中还包含NodeDef和OpDef两个成员。NodeDef表示节点算子的动态属性,创建Node时会new一个NodeDef对象。OpDef表示节点算子的静态属性,运行时不会变,创建Node时不需要new OpDef,只需要从OpDef仓库中取出即可。因为元信息是确定的,比如Operation的入参列表,出参列表等。

目录
相关文章
|
6月前
|
Ubuntu 定位技术 TensorFlow
源码编译安装ROCm以运行tensorflow-rocm(适用于Ubuntu 23.04)
总结一番,完成这趟奇妙的技术之旅后,乐趣多多,还能享受 tensorflow-rocm 带来的便利和速度。这趟旅程需要耐心,勇气,以及对技术的热爱。朋友,做好准备,让你的Ubuntu系统展翅高飞吧!
313 9
|
9月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
845 29
|
9月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
340 4
|
9月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
9月前
|
移动开发 前端开发 JavaScript
从入门到精通:H5游戏源码开发技术全解析与未来趋势洞察
H5游戏凭借其跨平台、易传播和开发成本低的优势,近年来发展迅猛。接下来,让我们深入了解 H5 游戏源码开发的技术教程以及未来的发展趋势。
|
9月前
|
存储 前端开发 JavaScript
在线教育网课系统源码开发指南:功能设计与技术实现深度解析
在线教育网课系统是近年来发展迅猛的教育形式的核心载体,具备用户管理、课程管理、教学互动、学习评估等功能。本文从功能和技术两方面解析其源码开发,涵盖前端(HTML5、CSS3、JavaScript等)、后端(Java、Python等)、流媒体及云计算技术,并强调安全性、稳定性和用户体验的重要性。
|
10月前
|
机器学习/深度学习 自然语言处理 算法
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
2410 1
|
9月前
|
负载均衡 JavaScript 前端开发
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
12月前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
11月前
|
自然语言处理 数据处理 索引
mindspeed-llm源码解析(一)preprocess_data
mindspeed-llm是昇腾模型套件代码仓,原来叫"modelLink"。这篇文章带大家阅读一下数据处理脚本preprocess_data.py(基于1.0.0分支),数据处理是模型训练的第一步,经常会用到。
313 0

推荐镜像

更多
  • DNS