Tensorflow源码解析5 -- 图的边 - Tensor

简介: # 1 概述 前文两篇文章分别讲解了TensorFlow核心对象Graph,和Graph的节点Operation。Graph另外一大成员,即为其边Tensor。边用来表示计算的数据,它经过上游节点计算后得到,然后传递给下游节点进行运算。本文讲解Graph的边Tensor,以及TensorFlow中的变量。 # 2 前端边Tensor数据结构 Tensor作为Graph的边

1 概述

前文两篇文章分别讲解了TensorFlow核心对象Graph,和Graph的节点Operation。Graph另外一大成员,即为其边Tensor。边用来表示计算的数据,它经过上游节点计算后得到,然后传递给下游节点进行运算。本文讲解Graph的边Tensor,以及TensorFlow中的变量。

2 前端边Tensor数据结构

Tensor作为Graph的边,使得节点Operation之间建立了连接。上游源节点Operation经过计算得到数据Tensor,然后传递给下游目标节点,是一个典型的生产者-消费者关系。下面来看Tensor的数据结构

@tf_export("Tensor")
class Tensor(_TensorLike):
  def __init__(self, op, value_index, dtype):
    # 源节点,tensor的生产者,会计算得到tensor
    self._op = op

    # tensor在源节点的输出边集合中的索引。源节点可能会有多条输出边
    # 利用op和value_index即可唯一确定tensor。
    self._value_index = value_index

    # tensor中保存的数据的数据类型
    self._dtype = dtypes.as_dtype(dtype)

    # tensor的shape,可以得到张量的rank,维度等信息
    self._shape_val = tensor_shape.unknown_shape()

    # 目标节点列表,tensor的消费者,会使用该tensor来进行计算
    self._consumers = []

    #
    self._handle_data = None
    self._id = uid()

Tensor中主要包含两类信息,一个是Graph结构信息,如边的源节点和目标节点。另一个则是它所保存的数据信息,例如数据类型,shape等。

3 后端边Edge数据结构

后端中的Graph主要成员也是节点node和边edge。节点node为计算算子Operation,边Edge为算子所需要的数据,或者代表节点间的依赖关系。这一点和Python中的定义相似。边Edge的持有它的源节点和目标节点的指针,从而将两个节点连接起来。下面看Edge类的定义。

class Edge {
   private:
      Edge() {}

      friend class EdgeSetTest;
      friend class Graph;
      // 源节点, 边的数据就来源于源节点的计算。源节点是边的生产者
      Node* src_;

      // 目标节点,边的数据提供给目标节点进行计算。目标节点是边的消费者
      Node* dst_;

      // 边id,也就是边的标识符
      int id_;

      // 表示当前边为源节点的第src_output_条边。源节点可能会有多条输出边
      int src_output_;

      // 表示当前边为目标节点的第dst_input_条边。目标节点可能会有多条输入边。
      int dst_input_;
};

Edge既可以承载tensor数据,提供给节点Operation进行运算,也可以用来表示节点之间有依赖关系。对于表示节点依赖的边,其src_output_, dst_input_均为-1,此时边不承载任何数据。

4 常量constant

TensorFlow的常量constant,最终包装成了一个Tensor。通过tf.constant(10),返回一个Tensor对象。

@tf_export("constant")
def constant(value, dtype=None, shape=None, name="Const", verify_shape=False):
  # 算子注册到默认Graph中
  g = ops.get_default_graph()
    
  # 对常量值value的处理
  tensor_value = attr_value_pb2.AttrValue()
  tensor_value.tensor.CopyFrom(
      tensor_util.make_tensor_proto(
          value, dtype=dtype, shape=shape, verify_shape=verify_shape))

  # 对常量值的类型dtype进行处理
  dtype_value = attr_value_pb2.AttrValue(type=tensor_value.tensor.dtype)

  # 构造并注册类型为“Const”的算子到Graph中,从算子的outputs中取出输出的tensor。
  const_tensor = g.create_op(
      "Const", [], [dtype_value.type],
      attrs={"value": tensor_value,
             "dtype": dtype_value},
      name=name).outputs[0]
  return const_tensor

tf.constant的过程为

  1. 获取默认graph
  2. 对常量值value和常量值的类型dtype进行处理
  3. 构造并注册类型为“Const”的算子到默认graph中,从算子的outputs中取出输出的tensor。

此时只是图的构造过程,tensor并未承载数据,仅表示Operation输出的一个符号句柄。经过tensor.eval()或session.run()后,才会启动graph的执行,并得到数据。

5 变量Variable

Variable构造器

通过tf.Variable()构造一个变量,代码如下,我们仅分析入参。

@tf_export("Variable")
class Variable(object):
  def __init__(self,
               initial_value=None,
               trainable=True,
               collections=None,
               validate_shape=True,
               caching_device=None,
               name=None,
               variable_def=None,
               dtype=None,
               expected_shape=None,
               import_scope=None,
               constraint=None):
# initial_value: 初始值,为一个tensor,或者可以被包装为tensor的值
# trainable:是否可以训练,如果为false,则训练时不会改变
# collections:变量要加入哪个集合中,有全局变量集合、本地变量集合、可训练变量集合等。默认加入全局变量集合中
# dtype:变量的类型

主要的入参代码中已经给出了注释。Variable可以接受一个tensor或者可以被包装为tensor的值,来作为初始值。事实上,Variable可以看做是Tensor的包装器,它重载了Tensor的几乎所有操作,是对Tensor的进一步封装。

Variable初始化

变量只有初始化后才能使用,初始化时将initial_value初始值赋予Variable内部持有的Tensor。通过运行变量的初始化器可以对变量进行初始化,也可以执行全局初始化器。如下

y = tf.Variable([5.3])

with tf.Session() as sess:
    initialization = tf.global_variables_initializer()
    print sess.run(y)

Variable集合

Variable被划分到不同的集合中,方便后续操作。常见的集合有

  1. 全局变量:全局变量可以在不同进程中共享,可运用在分布式环境中。变量默认会加入到全局变量集合中。通过tf.global_variables()可以查询全局变量集合。其op标示为GraphKeys.GLOBAL_VARIABLES

    @tf_export("global_variables")
    def global_variables(scope=None):
      return ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES, scope)
  2. 本地变量:运行在进程内的变量,不能跨进程共享。通常用来保存临时变量,如训练迭代次数epoches。通过tf.local_variables()可以查询本地变量集合。其op标示为GraphKeys.LOCAL_VARIABLES

    @tf_export("local_variables")
    def local_variables(scope=None):
        return ops.get_collection(ops.GraphKeys.LOCAL_VARIABLES, scope)
  3. 可训练变量:一般模型参数会放到可训练变量集合中,训练时,做这些变量会得到改变。不在这个集合中的变量则不会得到改变。默认会放到此集合中。通过tf.trainable_variables()可以查询。其op标示为GraphKeys.TRAINABLE_VARIABLES

    @tf_export("trainable_variables")
    def trainable_variables(scope=None):
      return ops.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES, scope)

其他集合还有model_variables,moving_average_variables。

目录
相关文章
|
6月前
|
Ubuntu 定位技术 TensorFlow
源码编译安装ROCm以运行tensorflow-rocm(适用于Ubuntu 23.04)
总结一番,完成这趟奇妙的技术之旅后,乐趣多多,还能享受 tensorflow-rocm 带来的便利和速度。这趟旅程需要耐心,勇气,以及对技术的热爱。朋友,做好准备,让你的Ubuntu系统展翅高飞吧!
313 9
|
9月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
845 29
|
9月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
340 4
|
9月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
9月前
|
移动开发 前端开发 JavaScript
从入门到精通:H5游戏源码开发技术全解析与未来趋势洞察
H5游戏凭借其跨平台、易传播和开发成本低的优势,近年来发展迅猛。接下来,让我们深入了解 H5 游戏源码开发的技术教程以及未来的发展趋势。
|
9月前
|
存储 前端开发 JavaScript
在线教育网课系统源码开发指南:功能设计与技术实现深度解析
在线教育网课系统是近年来发展迅猛的教育形式的核心载体,具备用户管理、课程管理、教学互动、学习评估等功能。本文从功能和技术两方面解析其源码开发,涵盖前端(HTML5、CSS3、JavaScript等)、后端(Java、Python等)、流媒体及云计算技术,并强调安全性、稳定性和用户体验的重要性。
|
10月前
|
机器学习/深度学习 自然语言处理 算法
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
2410 1
|
9月前
|
负载均衡 JavaScript 前端开发
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
12月前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
12月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析

热门文章

最新文章

推荐镜像

更多
  • DNS