使用 QuickBI 搭建酷炫可视化分析

本文涉及的产品
智能商业分析 Quick BI,专业版 50license 1个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 随着各行各业大数据的渗透,BI 类数据分析需求与日俱增,如何让可视化更好的展现数据的价值,是 BI 类产品一直努力的方向。对此国内外的BI产品都有自己的方法,如国外大牌的 PowerBI、Tableau,还有国内的 FineBI、BDP、QuickBI 他们都提供了丰富度可视化能力,但对于新手而言,有了数据之后如何选择合适的图表?如何配置酷炫夺目的图表?多个图表如何组织有故事的报表?亦或是你想了解可视化背后的技术原理,本文将一一为你解答。

随着各行各业大数据的渗透,BI 类数据分析需求与日俱增,如何让可视化更好的展现数据的价值,是 BI 类产品一直努力的方向。对此国内外的BI产品都有自己的方法,如国外大牌的 PowerBI、Tableau,还有国内的 FineBI、BDP、Quick BI 他们都提供了丰富度可视化能力,但对于新手而言,有了数据之后如何选择合适的图表?如何配置酷炫夺目的图表?多个图表如何组织有故事的报表?亦或是你想了解可视化背后的技术原理,本文将一一为你解答。


图表开发

要使用 Quick BI 做可视化分析,只需要简单的三步(开启试用后方可进入下方链接,点击此处开始试用

  1. 连接数据源,打开 http://bi.aliyun.com/workspace/datasource 轻松配置。目前Quick BI已经支持包括 Mysql/PostgreSQL/SQL Server/Hive 在内的绝大多数数据源类型
  2. 新建数据集,打开 http://bi.aliyun.com/workspace/schema 选择数据库中一个表创建数据集,数据集也支持多个表之间雪花模型和星型模型关联
  3. 创建仪表板,接下来就可以开始选择需要的图表


首先看一下 Quick BI 图表的种类:

如上图,Quick BI目前共提供十三类三十多种图表,如柱状图包含普通柱图、堆积柱状图、百分比堆积柱图、条形图、堆积条形图、百分比堆积条形图6种,能涵盖 BI 分析中的绝大多数场景。


Quick BI还能轻松构建线柱组合图。如下图,为了分析服装类目利润和访客数及销量关系,利润使用柱状展示有利于突出主次关系。


鼠标hover到图例上能高亮指定数据,适合维度过多情况下单个维度分析。


此外,Quick BI 相对于其它图表,会对大数据量场景做适配,避免文案覆盖或展示不全。如下图,当饼图用例过多时,会对图例自动开启滚动条展示,Tooltip 显示位置优化排布:


此外还有来源去向图,适合分析页面间调整和用户行为路径:


QuickBI 提供这么多图表展示方式,但如何选择合适的图表类型能?这就需要根据数据特征出发,掌握这一技能需要练习和经验,对于新手,你可以参考如下图表选择流程图。

参考至 Andrew Abela 博士的图表建议(http://extremepresentation.typepad.com/blog/2006/09/choosing_a_good.html


图表实现原理

介绍完图表类型和使用方法,如果你对图表技术原理感兴趣,可以看接下来的图表实现原理分析。


图表框架从上到下共分为4层:

1. 组件层

基于图表展示方式的不同,交互有很大差别,因此将线图、柱图、面积图、条形图、饼图等归位基础图表,他们基于常规的笛卡尔坐标系或极坐标系构建;交叉表、矩阵树图、漏斗图、来源去向图等交互各异,需要针对性优化,归为富交互图表;地图需要基于LBS地理位置数据,目前内置中国省市县地图,可以在不同级别上钻和下钻。最后一类是未来计划上线的3D图表。结合着目前VR/AR设备的兴起,3D图表在视觉效果上有更好的体验,未来计划发力。

2. 图表交互层

静态图表是呆板的,灵活的交互就像让图表说话一样提高数据分析的效率和体验,对于OLAP类数据来说钻取联动跳转是基本交互,这些所有支持类图表可以统一实现。坐标轴Axis、图例、提示框Tooltip在多个图表都支持,封装成通用模块方式提供。对于大数据量而言,这3个通用模块都需要解决小空间下如何展示大量文案的问题,Quick BI 内部基于很多算法来做展示优化,如当坐标轴数量过多时,通过对比坐标轴宽度和文案宽度,自动计算坐标轴文案倾斜夹角,避免文案重叠。对于数据量过大情况,实现自动抽样展示。

3. 数据配置层

数据主要分为两类:『展示数据』和『图表配置数据』。

展示数据是业务中的原始数据,不会因为图表类型的不同而变化。

图表配置数据又分为『用户产生的图表配置』和『图表默认配置』,最终图表展示是以二者合并之后为准。

由于上层图表交互只负责展现,因此需要的数据结构也是为了高效展现,接口提供的数据是为了方便存储,因此二者很多情况下不一致,所以就需要数据转换层做数据格式适配。

这一层是整个数据处理的核心,并不仅仅是转换方法,数据结构的设计同样是关键,需要兼顾到不同图表类型横向和未来扩展纵向的多重考量。

4. 底层依赖

由于可视化图表的多样性,一套框架或绘制方法很难高效满足业务需求,因此底层基于G2、Three.js、Leaflet 三个基础库,这三者有不是现成的图表库,都需要具体实现图表。类似于面粉和面条的关系,这三者相当于不同口味的面粉,最终开发的图表像面条。

G2 是一套基于可视化编码的图形语法,以数据驱动,适用于基础图表;Three.js 是WebGL的封装,提供高效API开发3D图表;Leaflet 适用于开发交互式地图类图表。


总结

以上是 Quick BI 图表的介绍、用法和技术原理。Quick BI 正是凭借阿里巴巴在大数据领域多年的经验,不断打磨出来的一款 BI 产品。希望他能帮你从杂乱的数字转换为酷炫的图表,帮你发掘数据背后的价值。

相关实践学习
助力游戏运营数据分析
本体验通过多产品组合构建了游戏数据运营分析平台,提供全面的游戏运营指标分析功能,并有效的分析渠道效果。更加有效地掌握游戏运营状态,也可充分利用数据分析的结果改进产品体验,提高游戏收益。
Quick BI在业务数据分析中的实战应用
Quick BI 是一款专为云上用户和企业量身打造的新一代自助式智能BI服务平台,其简单易用的可视化操作和灵活高效的多维分析能力,让精细化数据洞察为商业决策保驾护航。为了帮助您更快的学习和上手产品,同时更好地感受QuickBI在业务数据分析实践中的高效价值,下面将以一个真实的数据分析案例为场景带您开启QuickBI产品之旅。场景:假设您是一家大型互联网新零售企业的数据分析师,您的经理刚刚拿到8月份的月度运营分析数据,他发现近期企业运营状况不佳,8月份毛利额环比前几个月下滑较大,三季度存在达标风险。因此将这个任务交给了您,根据订单信息和流量渠道信息等相关数据,分析企业8月份毛利额下滑的关键要素,并将其分享给团队,以便指导相关业务部门采取决策和行动,提高企业整体毛利额。  
目录
相关文章
|
8月前
|
BI
Quick BI V5.0发布:一键解锁智能小Q等全新智能商业分析能力
Quick BI V5.0发布:一键解锁智能小Q等全新智能商业分析能力
279 0
|
8月前
|
监控 数据可视化 搜索推荐
四度入选Gartner后Quick BI又有大动作 | 着重交互分析与监控告警升级,持续优化分析链路
四度入选Gartner后Quick BI又有大动作 | 着重交互分析与监控告警升级,持续优化分析链路
402 0
|
监控 数据可视化 数据挖掘
Quick BI数据大屏可视化大赛
玩转炫酷的可视化大屏,老板看了直接帮你升职加薪,更有千元天猫超市购物卡等你来拿!
26129 62
Quick BI数据大屏可视化大赛
|
监控 数据可视化 安全
SaaA 及案例分析-阿里云数据可视化服务 Quick BI|学习笔记
快速学习 SaaA 及案例分析-阿里云数据可视化服务 Quick BI
367 0
SaaA 及案例分析-阿里云数据可视化服务 Quick BI|学习笔记
|
分布式计算 BI MaxCompute
QuickBI关于业务分析人员连接MaxCompute数据源权限控制问题解决方案及常见报错解析
企业上云,maxcompute数仓结合quickbi智能报表的组合较为常见,使用广泛。maxcompute权限管理较为精细化,部分权限缺失常常导致bi端相关数据应用报错,权限过高又会有潜在的风险暴露。本文针对上述问题提出相关的解决方案及常见的报错解析,当前方案已得到较多的应用。
1515 0
QuickBI关于业务分析人员连接MaxCompute数据源权限控制问题解决方案及常见报错解析
|
数据可视化 大数据 BI
阿里云大数据ACP(三)可视化 Quick BI 2
阿里云大数据ACP(三)可视化 Quick BI 2
207 0
阿里云大数据ACP(三)可视化 Quick BI 2
|
数据可视化 大数据 BI
阿里云大数据ACP(三)可视化 Quick BI 1
阿里云大数据ACP(三)可视化 Quick BI 1
258 0
阿里云大数据ACP(三)可视化 Quick BI 1
|
存储 SQL 缓存
双引擎驱动Quick BI十亿数据0.3秒分析,首屏展示时间缩短30%
在规划中,Quick BI制定了产品竞争力建设的三大方向,包括Quick(快)能力、移动端能力和集成能力。针对其中的产品“报表查看打开慢”“报表开发数据同步慢”等性问题开展专项战役——Quick战役,以实现展现快、计算快,为使用者提供顺滑体验为目标。
437 0
|
数据可视化 数据挖掘 大数据
Apsara Clouder认证之旅 使用Quick BI 制作企业数据分析报表
认证笔记 - Apsara Clouder 技能认证 - 大数据技能认证 - 使用 Quick BI 制作企业数据分析报表
271 1
Apsara Clouder认证之旅 使用Quick BI 制作企业数据分析报表