深入分析 ThreadLocal 内存泄漏问题

简介: 前言 ThreadLocal 的作用是提供线程内的局部变量,这种变量在线程的生命周期内起作用,减少同一个线程内多个函数或者组件之间一些公共变量的传递的复杂度。但是如果滥用 ThreadLocal,就可能会导致内存泄漏。

前言

ThreadLocal 的作用是提供线程内的局部变量,这种变量在线程的生命周期内起作用,减少同一个线程内多个函数或者组件之间一些公共变量的传递的复杂度。但是如果滥用 ThreadLocal,就可能会导致内存泄漏。下面,我们将围绕三个方面来分析 ThreadLocal 内存泄漏的问题

  • ThreadLocal 实现原理
  • ThreadLocal为什么会内存泄漏
  • ThreadLocal 最佳实践

ThreadLocal 实现原理

ThreadLocal的实现是这样的:每个Thread 维护一个 ThreadLocalMap 映射表,这个映射表的 keyThreadLocal 实例本身,value 是真正需要存储的 Object

也就是说 ThreadLocal 本身并不存储值,它只是作为一个 key 来让线程从 ThreadLocalMap 获取 value。值得注意的是图中的虚线,表示 ThreadLocalMap 是使用 ThreadLocal 的弱引用作为 Key 的,弱引用的对象在 GC 时会被回收。

ThreadLocal为什么会内存泄漏

ThreadLocalMap使用ThreadLocal的弱引用作为key,如果一个ThreadLocal没有外部强引用来引用它,那么系统 GC 的时候,这个ThreadLocal势必会被回收,这样一来,ThreadLocalMap中就会出现keynullEntry,就没有办法访问这些keynullEntryvalue,如果当前线程再迟迟不结束的话,这些keynullEntryvalue就会一直存在一条强引用链:Thread Ref -> Thread -> ThreaLocalMap -> Entry -> value永远无法回收,造成内存泄漏。

其实,ThreadLocalMap的设计中已经考虑到这种情况,也加上了一些防护措施:在ThreadLocalget(),set(),remove()的时候都会清除线程ThreadLocalMap里所有keynullvalue

但是这些被动的预防措施并不能保证不会内存泄漏:

  • 使用staticThreadLocal,延长了ThreadLocal的生命周期,可能导致的内存泄漏(参考ThreadLocal 内存泄露的实例分析)。
  • 分配使用了ThreadLocal又不再调用get(),set(),remove()方法,那么就会导致内存泄漏。

为什么使用弱引用

从表面上看内存泄漏的根源在于使用了弱引用。网上的文章大多着重分析ThreadLocal使用了弱引用会导致内存泄漏,但是另一个问题也同样值得思考:为什么使用弱引用而不是强引用?

我们先来看看官方文档的说法:

To help deal with very large and long-lived usages, the hash table entries use WeakReferences for keys.

为了应对非常大和长时间的用途,哈希表使用弱引用的 key。

下面我们分两种情况讨论:

  • key 使用强引用:引用的ThreadLocal的对象被回收了,但是ThreadLocalMap还持有ThreadLocal的强引用,如果没有手动删除,ThreadLocal不会被回收,导致Entry内存泄漏。
  • key 使用弱引用:引用的ThreadLocal的对象被回收了,由于ThreadLocalMap持有ThreadLocal的弱引用,即使没有手动删除,ThreadLocal也会被回收。value在下一次ThreadLocalMap调用set,getremove的时候会被清除。

比较两种情况,我们可以发现:由于ThreadLocalMap的生命周期跟Thread一样长,如果都没有手动删除对应key,都会导致内存泄漏,但是使用弱引用可以多一层保障:弱引用ThreadLocal不会内存泄漏,对应的value在下一次ThreadLocalMap调用set,get,remove的时候会被清除

因此,ThreadLocal内存泄漏的根源是:由于ThreadLocalMap的生命周期跟Thread一样长,如果没有手动删除对应key就会导致内存泄漏,而不是因为弱引用。

ThreadLocal 最佳实践

综合上面的分析,我们可以理解ThreadLocal内存泄漏的前因后果,那么怎么避免内存泄漏呢?

  • 每次使用完ThreadLocal,都调用它的remove()方法,清除数据。

在使用线程池的情况下,没有及时清理ThreadLocal,不仅是内存泄漏的问题,更严重的是可能导致业务逻辑出现问题。所以,使用ThreadLocal就跟加锁完要解锁一样,用完就清理。

参考文章
Java并发包学习七 解密ThreadLocal
ThreadLocal可能引起的内存泄露

目录
相关文章
|
11天前
|
编译器 C语言
动态内存分配与管理详解(附加笔试题分析)(上)
动态内存分配与管理详解(附加笔试题分析)
34 1
|
1月前
|
程序员 编译器 C++
【C++核心】C++内存分区模型分析
这篇文章详细解释了C++程序执行时内存的四个区域:代码区、全局区、栈区和堆区,以及如何在这些区域中分配和释放内存。
46 2
|
11天前
|
程序员 编译器 C语言
动态内存分配与管理详解(附加笔试题分析)(下)
动态内存分配与管理详解(附加笔试题分析)(下)
25 2
|
1月前
|
算法 程序员 Python
程序员必看!Python复杂度分析全攻略,让你的算法设计既快又省内存!
在编程领域,Python以简洁的语法和强大的库支持成为众多程序员的首选语言。然而,性能优化仍是挑战。本文将带你深入了解Python算法的复杂度分析,从时间与空间复杂度入手,分享四大最佳实践:选择合适算法、优化实现、利用Python特性减少空间消耗及定期评估调整,助你写出高效且节省内存的代码,轻松应对各种编程挑战。
29 1
|
1月前
|
存储 Prometheus NoSQL
Redis 内存突增时,如何定量分析其内存使用情况
【9月更文挑战第21天】当Redis内存突增时,可采用多种方法分析内存使用情况:1)使用`INFO memory`命令查看详细内存信息;2)借助`redis-cli --bigkeys`和RMA工具定位大键;3)利用Prometheus和Grafana监控内存变化;4)优化数据类型和存储结构;5)检查并调整内存碎片率。通过这些方法,可有效定位并解决内存问题,保障Redis稳定运行。
|
16天前
|
SQL 安全 算法
ChatGPT高效提问—prompt实践(漏洞风险分析-重构建议-识别内存泄漏)
ChatGPT高效提问—prompt实践(漏洞风险分析-重构建议-识别内存泄漏)
26 0
|
1月前
|
NoSQL 程序员 Linux
轻踩一下就崩溃吗——踩内存案例分析
踩内存问题分析成本较高,尤其是低概率问题困难更大。本文详细分析并还原了两个由于动态库全局符号介入机制(it's a feature, not a bug)触发的踩内存案例。
|
1月前
|
存储 运维
.NET开发必备技巧:使用Visual Studio分析.NET Dump,快速查找程序内存泄漏问题!
.NET开发必备技巧:使用Visual Studio分析.NET Dump,快速查找程序内存泄漏问题!
|
2月前
|
NoSQL Java 测试技术
Golang内存分析工具gctrace和pprof实战
文章详细介绍了Golang的两个内存分析工具gctrace和pprof的使用方法,通过实例分析展示了如何通过gctrace跟踪GC的不同阶段耗时与内存量对比,以及如何使用pprof进行内存分析和调优。
66 0
Golang内存分析工具gctrace和pprof实战
|
1月前
使用qemu来dump虚拟机的内存,然后用crash来分析
使用qemu来dump虚拟机的内存,然后用crash来分析