MXNet 核心接口

简介: 介绍一些 MXNet 常用的 API
from mxnet import cpu, gpu, nd

Context

Context 是模型的数据放置的环境:

a = nd.array([2, 4], ctx=cpu())
a1 = nd.array([3, 7], ctx=gpu(0))
a.context, a1.context
(cpu(0), gpu(0))

当然,也可以在 CPU 与 GPU 之间进行复制。

a2 = a.copyto(a1)   # 要求 a 与 a1 有相同的 shape
a1 is a2, a2.context
(True, gpu(0))
a1  # a1 被修改了

[2. 4.]
<NDArray 2 @gpu(0)>

为了进行深度复制,需要使用:

a3 = nd.array([3, 9])
a4 = a3.as_in_context(gpu(0))
a3 is a4, a3.context, a4.context
(False, cpu(0), gpu(0))

Symbol

  • Symbol 的基本函数 - 定义计算图
  • Symbol.infer_type: 推导当前 Symbol 所依赖的所有 Symbol 数据类型
  • Symbol.infer_shape: 推导当前 Symbol 所依赖的所有 Symbol 的形状
  • Symbol.list_argments: 列出当前 Symbol 所用到的基本参数名称
  • Symbo.list_outputs: 列出当前 Symbol 的输出名称
  • Symbol.list_auxiliary_states: 列出当前 Symbol 的辅助参量名称
from mxnet import sym, symbol
X = sym.Variable('X')
out = sym.FullyConnected(data=X, name='fc1', num_hidden=1000)
out = symbol.BatchNorm(out, name='batchnorm')
out = sym.Activation(data=out, act_type='relu')
out = sym.FullyConnected(data=out, name='fc2', num_hidden=10)
arg_types, out_types, aux_types = out.infer_type(X='float32')
arg_types, out_types, aux_types
([numpy.float32,
  numpy.float32,
  numpy.float32,
  numpy.float32,
  numpy.float32,
  numpy.float32,
  numpy.float32],
 [numpy.float32],
 [numpy.float32, numpy.float32])
arg_shapes, out_shapes, aux_shapes = out.infer_shape(X=(100,784))
arg_shapes, out_shapes, aux_shapes
([(100, 784), (1000, 784), (1000,), (1000,), (1000,), (10, 1000), (10,)],
 [(100, 10)],
 [(1000,), (1000,)])
out.list_arguments()
['X',
 'fc1_weight',
 'fc1_bias',
 'batchnorm_gamma',
 'batchnorm_beta',
 'fc2_weight',
 'fc2_bias']
out.list_outputs()
['fc2_output']
out.list_auxiliary_states()
['batchnorm_moving_mean', 'batchnorm_moving_var']

Symbol 如何获取中间节点

在定义好一个网络之后,如何去获取任何一个节点的输出值对于深度神经网络的迁移来说非常重要,因为在使用时通常并不是自己从头开始训练一个网络,而是在别人训练好的网络基础上根据自己的问题进行微调。

X = sym.Variable('X')
fc1 = sym.FullyConnected(data=X, name='fc1', num_hidden=1000)
act = sym.Activation(data=fc1, act_type='relu')
fc2 = sym.FullyConnected(data=act, name='fc2', num_hidden=10)
net = sym.SoftmaxOutput(fc2, name="softmax")
net.get_internals()
<Symbol group [X, fc1_weight, fc1_bias, fc1, activation0, fc2_weight, fc2_bias, fc2, softmax_label, softmax]>
subnet = net.get_internals()['fc2_output']
subnet, subnet.list_arguments()
(<Symbol fc2>, ['X', 'fc1_weight', 'fc1_bias', 'fc2_weight', 'fc2_bias'])

首先使用 get_internals() 获取整个 Symbol 的子图,输出是整个内部节点的输出节点列表。然后可以通过索引获取网络的子图。在上面的例子中,我们获取网络层的倒数第二层 fc2,可以看到 fc2 也是一个 Symbol 对象。

fc2.list_arguments()
['X', 'fc1_weight', 'fc1_bias', 'fc2_weight', 'fc2_bias']

同理,有:

subnet = net.get_internals()['fc1_output']
subnet.list_arguments()
['X', 'fc1_weight', 'fc1_bias']

图的拼接

假如,我们拿到了别人训练好的网络参数文件和网络结构文件,我们可以固定网络图的前部分,在尾部添加额外的 Symbol 节点,但是在网络的头部替换输入节点较困难。

X = sym.Variable('X')
fc1 =  sym.FullyConnected(data=X, name='fc1', num_hidden=1000)
act =  sym.Activation(data=fc1, act_type='relu',name='act')
fc2 =  sym.FullyConnected(data=act, name='fc2', num_hidden=10)
net = sym.SoftmaxOutput(fc2,name="softmax")
net.save('model.symbol.json')

如上面所示,我们先定义好了一个 包含 10 个输出节点网络,然后将 Smbol 网络保存到 json 文件。接下来我们重新加载这个 json 文件,并且在网络结尾处重新修改网络层的输出为 20。

net = sym.load('model.symbol.json')
net.get_internals().list_outputs()
['X',
 'fc1_weight',
 'fc1_bias',
 'fc1_output',
 'act_output',
 'fc2_weight',
 'fc2_bias',
 'fc2_output',
 'softmax_label',
 'softmax_output']
newnet = net.get_internals()['act_output']
newnet = sym.FullyConnected(data=fc1,num_hidden=20,name ='fc2_new')
newnet = sym.SoftmaxOutput(data=newnet,name='softmax_new')
newnet.get_internals().list_outputs()
['X',
 'fc1_weight',
 'fc1_bias',
 'fc1_output',
 'fc2_new_weight',
 'fc2_new_bias',
 'fc2_new_output',
 'softmax_new_label',
 'softmax_new_output']

Metric

Metric 是用来衡量模型效果的接口
当我们定义好一个 Metric,比如说 Accuracy , 然后将 Accuracy 交给 Module 托管的时候,在每个 Epoch 结束时,会自动调用 update 方法,计算 正确预测的样本数量和总共的样本数量,进而调用父类中的 get 方法,计算出最后的 Acc。

from mxnet import metric

predicts = [nd.array([[0.3, 0.7], [0, 1.], [0.4, 0.6]])]
labels   = [nd.array([0, 1, 1])]
acc = metric.Accuracy()
acc.update(preds = predicts, labels = labels)
acc.get()
('accuracy', 0.6666666666666666)

Metric Hack 分析

如果我们想要定义 自己的 Metric 类,需要完成下面几步:

  • 继承 metric.EvalMetric 接口,重新定义 update 方法,update 传入参数分析:

    • labels : list 类型,每个元素对应 DataBatch 中的 label
    • predicts : list 类型, 是 Loss Symbol 中 label 外的输入,因此 list 中的元素个数与网络上 loss 的个数有关
  1. 函数需要完成:
  • 更新属性 sum_metricnum_inst 的值,mxnet 会调用 get 函数中的 self.sum_metric / self.num_inst 来计算当前 metric 的输出值。
  • 与一个特殊的 Callback 类有关: Speedometer 会自动打印出所有 metric 的值。

转载:https://www.imooc.com/article/278837

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
5天前
|
机器学习/深度学习 数据采集 自然语言处理
深度学习在自然语言处理中的应用与挑战
本文探讨了深度学习技术在自然语言处理(NLP)领域的应用,包括机器翻译、情感分析和文本生成等方面。同时,讨论了数据质量、模型复杂性和伦理问题等挑战,并提出了未来的研究方向和解决方案。通过综合分析,本文旨在为NLP领域的研究人员和从业者提供有价值的参考。
|
6天前
|
机器学习/深度学习 存储 人工智能
深度学习在图像识别中的应用与挑战
【9月更文挑战第27天】本文将深入探讨深度学习技术如何革新了图像识别领域,并分析当前面临的主要挑战。通过简明扼要的介绍,我们将揭示深度学习模型如何超越传统方法,以及它们在实际应用中的限制和未来发展方向。
|
2天前
|
机器学习/深度学习 算法框架/工具 计算机视觉
深度学习在图像识别中的应用
【9月更文挑战第30天】本文将深入探讨深度学习技术在图像识别领域的应用。我们将首先介绍深度学习的基本原理,然后通过一个实际的代码示例,展示如何使用深度学习进行图像识别。最后,我们将讨论深度学习在图像识别中的优势和挑战。
|
6天前
|
机器学习/深度学习 算法框架/工具 计算机视觉
深度学习在图像识别中的应用
【9月更文挑战第27天】本文将探讨深度学习技术如何改变图像识别领域。我们将通过实际案例和代码示例,展示深度学习模型如何从原始像素中学习和提取特征,以及如何使用这些特征进行准确的图像分类。
24 10
|
1天前
|
机器学习/深度学习 边缘计算 人工智能
深度学习在图像识别中的应用与挑战
【9月更文挑战第31天】本文深入探讨了深度学习技术在图像识别领域的应用,并分析了面临的主要挑战。从深度学习的基本概念出发,逐步展开到图像识别的具体应用案例,包括面部识别、自动驾驶车辆的视觉系统等。同时,文章也指出了数据集偏差、模型泛化能力以及计算资源限制等问题,并讨论了可能的解决方向。
|
2天前
|
机器学习/深度学习 边缘计算 人工智能
深度学习在图像识别中的应用与未来展望##
深度学习作为人工智能的重要分支,已经在许多领域展现出强大的应用前景。本文将探讨深度学习在图像识别技术中的应用及其未来的发展潜力。通过分析当前主流的深度学习模型和算法,揭示其在图像分类、目标检测等任务中的表现。同时,我们将讨论深度学习在图像识别中面临的挑战,并展望未来的研究方向和技术趋势。无论是对技术人员还是对普通读者,本文都将提供有价值的见解和启发。 ##
|
2天前
|
机器学习/深度学习 监控 算法
深度学习在图像识别中的应用与挑战
【9月更文挑战第30天】本文将探讨深度学习如何革新了图像识别领域,并介绍了一些核心算法和模型。我们将通过实际案例了解深度学习如何提升图像识别的准确度,并讨论当前面临的主要挑战及未来发展方向。
|
1天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【9月更文挑战第31天】本文旨在通过浅显易懂的语言和直观的比喻,为初学者揭开深度学习中卷积神经网络(CNN)的神秘面纱。我们将从CNN的基本原理出发,逐步深入到其在图像识别领域的实际应用,并通过一个简单的代码示例,展示如何利用CNN进行图像分类。无论你是编程新手还是深度学习的初学者,这篇文章都将为你打开一扇通往人工智能世界的大门。
|
5天前
|
机器学习/深度学习 存储 边缘计算
深度学习在图像识别中的应用与挑战
本文将探讨深度学习在图像识别领域中的应用及其面临的主要挑战。我们将从深度学习的基本概念入手,了解其如何改变图像识别技术。接着,通过案例分析展示深度学习在图像识别中的实际应用,并讨论当前面临的一些主要挑战,如数据隐私、算法偏见和计算资源问题。最后,我们将展望未来的发展方向和可能的解决方案。
17 4
下一篇
无影云桌面