协同过滤做商品推荐

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 本文的业务场景如下:通过一份7月份前的用户购物行为数据,获取商品的关联关系,对用户7月份之后的购买形成推荐,并评估结果。比如用户甲某在7月份之前买了商品A,商品A与B强相关,我们就在7月份之后推荐了商品B,并探查这次推荐是否命中。<br />数据源:购物数据<br />数据大小:328 KB<br />字段数量:4<br />使用组件:过滤与映射,SQL脚本,读数据表,JOIN<br />
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
打赏
0
0
0
3
2
分享
相关文章
基于用户的协同过滤算法实现商品推荐
基于用户的协同过滤算法实现商品推荐
119 2
推荐系统入门之使用协同过滤实现商品推荐的实验报告-6
推荐系统入门之使用协同过滤实现商品推荐的实验报告-6
270 0
推荐系统入门之使用协同过滤实现商品推荐的实验报告-6
推荐系统入门之使用协同过滤实现商品推荐的实验报告-7
推荐系统入门之使用协同过滤实现商品推荐的实验报告-7
257 0
推荐系统入门之使用协同过滤实现商品推荐的实验报告-7
推荐系统入门之使用协同过滤实现商品推荐的实验报告-1
推荐系统入门之使用协同过滤实现商品推荐的实验报告-1
312 0
推荐系统入门之使用协同过滤实现商品推荐的实验报告-1
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等