阿里云大数据计算服务MaxCompute使用教程

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 阿里云大数据计算服务MaxCompute使用教程 MaxCompute简介 大数据计算服务(MaxCompute,原名ODPS)是一种快速、完全托管的TB/PB级数据仓库解决方案。MaxCompute向用户提供了完善的数据导入方案以及多种经典的分布式计算模型,能够更快速的解决用户海量数据计算问题,有效降低企业成本,并保障数据安全。

阿里云大数据计算服务MaxCompute使用教程

MaxCompute简介

大数据计算服务(MaxCompute,原名ODPS)是一种快速、完全托管的TB/PB级数据仓库解决方案。MaxCompute向用户提供了完善的数据导入方案以及多种经典的分布式计算模型,能够更快速的解决用户海量数据计算问题,有效降低企业成本,并保障数据安全。MaxCompute主要服务于批量结构化数据的存储和计算,可以提供海量数据仓库的解决方案以及针对大数据的分析建模服务。随着社会数据收集手段的不断丰富及完善,越来越多的行业数据被积累下来。数据规模已经增长到了传统软件行业无法承载的海量数据(百GB、TB、乃至PB)级别。在分析海量数据场景下,由于单台服务器的处理能力限制,数据分析者通常采用分布式计算模式。但分布式的计算模型对数据分析人员提出了较高的要求,且不易维护。使用分布式模型,数据分析人员不仅需要了解业务需求,同时还需要熟悉底层计算模型。MaxCompute的目的是为用户提供一种便捷的分析处理海量数据的手段。用户可以不必关心分布式计算细节,从而达到分析大数据的目的。MaxCompute已经在阿里巴巴集团内部得到大规模应用,例如:大型互联网企业的数据仓库和BI分析、网站的日志分析、电子商务网站的交易分析、用户特征和兴趣挖掘等。

关于MaxCompute使用教程的详细信息:大数据计算服务MaxCompute使用教程

MaxCompute发展历程

从2009年9月阿里云成立,愿景就是做运算/分享数据第一平台;2010年4月,伴随阿里金融的贷款业务上线,ODPS正式投入生产运行,2012年建立统一数据平台,2013年具备超大规模海量数据处理能力,2014~2015年大数据平台开始日趋成熟,2016 MaxCompute 2.0的诞生,成立之初的愿景经过一步步努力逐步实现。

关键性里程碑

2010.04 ODPS正式投入生产运行。阿里金融的贷款业务上线稳定运行。

2013.05 ODPS公测。

2013.07 ODPS正式提供商业化服务,单集群规模5K台服务器多级群能力。

2016.09 ODPS正式更名为MaxCompute,并推出2.0,实现高性能,新功能,富生态。

MaxCompute组件介绍

数据通道:

TUNNEL:提供高并发的离线数据上传下载服务。用户可以使用Tunnel服务向MaxCompute批量上传或下载数据。MaxCompute Tunnel仅提供Java编程接口供用户使用。

计算及分析任务:

SQL :MaxCompute只能以表的形式存储数据,并对外提供了SQL查询功能。用户可以将MaxCompute作为传统的数据库软件操作,但其却能处理TB、PB级别的海量数据。需要注意的是,MaxCompute SQL不支持事务、索引及Update/Delete等操作,同时MaxCompute的SQL语法与Oracle,MySQL有一定差别,用户无法将其他数据库中得SQL语句无缝迁移到MaxCompute上来。此外,在使用方式上,MaxCompute SQL最快可以在分钟,乃至秒级别完成查询,无法在毫秒级别返回用户结果。MaxCompute SQL的优点是对用户的学习成本低,用户不需要了解复杂的分布式计算概念。具备数据库操作经验的用户可以快速熟悉MaxCompute SQL的使用。

MapReduce :MapReduce最早是由Google提出的分布式数据处理模型,随后受到了业内的广泛关注,并被大量应用到各种商业场景中。在本文档中,我们会对MapReduce模型做简要介绍,以便于用户快速熟悉、了解该模型。使用MaxCompute MapReduce的用户需要对分布式计算概念有基本了解,并有相对应的编程经验。MaxCompute MapReduce为用户提供Java编程接口。

Graph:MaxCompute提供的Graph功能是一套面向迭代的图计算处理框架。图计算作业使用图进行建模,图由点(Vertex)和边(Edge)组成,点和边包含权值(Value)。通过迭代对图进行编辑、演化,最终求解出结果,典型应用:PageRank,单源最短距离算法 ,K-均值聚类算法 等等。

SDK:提供给开发者的工具包,SDK的相关介绍请参考 SDK介绍。

安全:MaxCompute提供了功能强大的安全服务,为用户的数据安全提供保护,详情请参考 安全参考手册。
--------------------- 
作者:阿里云小百科 
来源:CSDN 
版权声明:本文为博主原创文章,转载请附上博文链接!
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
OSS大数据分析集成:MaxCompute直读OSS外部表优化查询性能(减少数据迁移的ETL成本)
MaxCompute直读OSS外部表优化方案,解决传统ETL架构中数据同步延迟高、传输成本大、维护复杂等问题。通过存储格式优化(ORC/Parquet)、分区剪枝、谓词下推与元数据缓存等技术,显著提升查询性能并降低成本。结合冷热数据分层与并发控制策略,实现高效数据分析。
构建AI时代的大数据基础设施-MaxCompute多模态数据处理最佳实践
本文介绍了大数据与AI一体化架构的演进及其实现方法,重点探讨了Data+AI开发全生命周期的关键步骤。文章分析了大模型开发中的典型挑战,如数据管理混乱、开发效率低下和运维管理困难,并提出了解决方案。同时,详细描述了MaxCompute在构建AI时代数据基础设施中的作用,包括其强大的计算能力、调度能力和易用性特点。此外,还展示了MaxCompute在多模态数据处理中的应用实践以及具体客户案例,最后提供了体验MaxFrame解决方案的方式。
206 2
大数据散列分区计算哈希值
大数据散列分区计算哈希值
144 4
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
820 1
课时6:阿里云MaxCompute:轻松玩转大数据
阿里云MaxCompute是全新的大数据计算服务,提供快速、完全托管的PB级数据仓库解决方案。它拥有高效的压缩存储技术、强大的计算能力和丰富的用户接口,支持SQL查询、机器学习等高级分析。MaxCompute兼容多种计算模型,开箱即用,具备金融级安全性和灵活的数据授权功能,帮助企业节省成本并提升效率。
158 0
ODPS MR节点跑graph连通分量计算代码报错java heap space如何解决
任务启动命令:jar -resources odps-graph-connect-family-2.0-SNAPSHOT.jar -classpath ./odps-graph-connect-family-2.0-SNAPSHOT.jar ConnectFamily 若是设置参数该如何设置
在数据浪潮中前行:记录一次我与ODPS的实践、思考与展望
本文详细介绍了在 AI 时代背景下,如何利用阿里云 ODPS 平台(尤其是 MaxCompute)进行分布式多模态数据处理的实践过程。内容涵盖技术架构解析、完整操作流程、实际部署步骤以及未来发展方向,同时结合 CSDN 博文深入探讨了多模态数据处理的技术挑战与创新路径,为企业提供高效、低成本的大规模数据处理方案。
50 3
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
29 4
ODPS:数据浪潮中的成长与突围
本文讲述了作者在大数据浪潮中,通过引入阿里云ODPS体系(包括MaxCompute、DataWorks、Hologres)解决数据处理瓶颈、实现业务突破与个人成长的故事。从被海量数据困扰到构建“离线+实时”数据架构,ODPS不仅提升了数据处理效率,更推动了技术能力与业务影响力的双重跃迁。
数据没洗干净,分析全白干:聊聊大数据里的“洗澡水”工程
数据没洗干净,分析全白干:聊聊大数据里的“洗澡水”工程
52 1