使用golang编写prometheus metrics exporter

本文涉及的产品
可观测监控 Prometheus 版,每月50GB免费额度
简介: metrcis输出collector.gopackage mainimport ( "github.com/prometheus/client_golang/prometheus")//Define a str...

metrcis输出
collector.go

package main

import (
	"github.com/prometheus/client_golang/prometheus"
)

//Define a struct for you collector that contains pointers
//to prometheus descriptors for each metric you wish to expose.
//Note you can also include fields of other types if they provide utility
//but we just won't be exposing them as metrics.
type fooCollector struct {
	fooMetric *prometheus.Desc
	barMetric *prometheus.Desc
}

//You must create a constructor for you collector that
//initializes every descriptor and returns a pointer to the collector
func newFooCollector() *fooCollector {
	return &fooCollector{
		fooMetric: prometheus.NewDesc("foo_metric",
			"Shows whether a foo has occurred in our cluster",
			nil, nil,
		),
		barMetric: prometheus.NewDesc("bar_metric",
			"Shows whether a bar has occurred in our cluster",
			nil, nil,
		),
	}
}

//Each and every collector must implement the Describe function.
//It essentially writes all descriptors to the prometheus desc channel.
func (collector *fooCollector) Describe(ch chan<- *prometheus.Desc) {

	//Update this section with the each metric you create for a given collector
	ch <- collector.fooMetric
	ch <- collector.barMetric
}

//Collect implements required collect function for all promehteus collectors
func (collector *fooCollector) Collect(ch chan<- prometheus.Metric) {

	//Implement logic here to determine proper metric value to return to prometheus
	//for each descriptor or call other functions that do so.
	var metricValue float64
	if 1 == 1 {
		metricValue = 1
	}

	//Write latest value for each metric in the prometheus metric channel.
	//Note that you can pass CounterValue, GaugeValue, or UntypedValue types here.
	ch <- prometheus.MustNewConstMetric(collector.fooMetric, prometheus.CounterValue, metricValue)
	ch <- prometheus.MustNewConstMetric(collector.barMetric, prometheus.CounterValue, metricValue)

}

http输出
main.go

package main

import (
  "net/http"

  log "github.com/Sirupsen/logrus"
  "github.com/prometheus/client_golang/prometheus"
  "github.com/prometheus/client_golang/prometheus/promhttp"
)

func main() {

  //Create a new instance of the foocollector and 
  //register it with the prometheus client.
  foo := newFooCollector()
  prometheus.MustRegister(foo)

  //This section will start the HTTP server and expose
  //any metrics on the /metrics endpoint.
  http.Handle("/metrics", promhttp.Handler())
  log.Info("Beginning to serve on port :8080")
  log.Fatal(http.ListenAndServe(":8080", nil))
}

单文件

package main

import (
	log "github.com/Sirupsen/logrus"
	"github.com/prometheus/client_golang/prometheus"
	"github.com/prometheus/client_golang/prometheus/promhttp"
	"net/http"
)

//Define a struct for you collector that contains pointers
//to prometheus descriptors for each metric you wish to expose.
//Note you can also include fields of other types if they provide utility
//but we just won't be exposing them as metrics.
type fooCollector struct {
	fooMetric *prometheus.Desc
	barMetric *prometheus.Desc
}

//You must create a constructor for you collector that
//initializes every descriptor and returns a pointer to the collector
func newFooCollector() *fooCollector {
	return &fooCollector{
		fooMetric: prometheus.NewDesc("fff_metric",
			"Shows whether a foo has occurred in our cluster",
			nil, nil,
		),
		barMetric: prometheus.NewDesc("bbb_metric",
			"Shows whether a bar has occurred in our cluster",
			nil, nil,
		),
	}
}

//Each and every collector must implement the Describe function.
//It essentially writes all descriptors to the prometheus desc channel.
func (collector *fooCollector) Describe(ch chan<- *prometheus.Desc) {

	//Update this section with the each metric you create for a given collector
	ch <- collector.fooMetric
	ch <- collector.barMetric
}

//Collect implements required collect function for all promehteus collectors
func (collector *fooCollector) Collect(ch chan<- prometheus.Metric) {

	//Implement logic here to determine proper metric value to return to prometheus
	//for each descriptor or call other functions that do so.
	var metricValue float64
	if 1 == 1 {
		metricValue = 1
	}

	//Write latest value for each metric in the prometheus metric channel.
	//Note that you can pass CounterValue, GaugeValue, or UntypedValue types here.
	ch <- prometheus.MustNewConstMetric(collector.fooMetric, prometheus.CounterValue, metricValue)
	ch <- prometheus.MustNewConstMetric(collector.barMetric, prometheus.CounterValue, metricValue)

}

func main() {

	//Create a new instance of the foocollector and
	//register it with the prometheus client.
	foo := newFooCollector()
	prometheus.MustRegister(foo)

	//This section will start the HTTP server and expose
	//any metrics on the /metrics endpoint.
	http.Handle("/metrics", promhttp.Handler())
	log.Info("Beginning to serve on port :8080")
	log.Fatal(http.ListenAndServe(":8080", nil))
}

相关实践学习
容器服务Serverless版ACK Serverless 快速入门:在线魔方应用部署和监控
通过本实验,您将了解到容器服务Serverless版ACK Serverless 的基本产品能力,即可以实现快速部署一个在线魔方应用,并借助阿里云容器服务成熟的产品生态,实现在线应用的企业级监控,提升应用稳定性。
目录
相关文章
|
8月前
|
消息中间件 Prometheus 监控
Prometheus实战篇:什么是Exporter
所有可以向Prometheus提供监控样本数据的程序都可以被称为一个Exporter.而Exporter的一个实例称为target,如图下所示, Prometheus通过轮询的方式定期从这些target中获取样本数据
|
2月前
|
Prometheus 监控 Cloud Native
Prometheus中的Exporter详解
【10月更文挑战第25天】Prometheus Exporter分为直接采集(如cAdvisor, Kubernetes)和间接采集(如Node Exporter)两类。
|
4月前
|
Prometheus Cloud Native Go
Golang语言之Prometheus的日志模块使用案例
这篇文章是关于如何在Golang语言项目中使用Prometheus的日志模块的案例,包括源代码编写、编译和测试步骤。
84 3
Golang语言之Prometheus的日志模块使用案例
|
5月前
|
Prometheus 监控 Cloud Native
性能监控之 Golang 应用接入 Prometheus 监控
【8月更文挑战第4天】性能监控之 Golang 应用接入 Prometheus 监控
252 0
性能监控之 Golang 应用接入 Prometheus 监控
|
Prometheus 运维 监控
云原生时代如何用 Prometheus 实现性能压测可观测-Metrics 篇
可观测性包括 Metrics、Traces、Logs3 个维度。可观测能力帮助我们在复杂的分布式系统中快速排查、定位问题,是分布式系统中必不可少的运维工具。
云原生时代如何用 Prometheus 实现性能压测可观测-Metrics 篇
|
Prometheus Cloud Native Linux
Prometheus(二)之Node Exporter采集Linux主机数据
Prometheus(二)之Node Exporter采集Linux主机数据
291 0
|
存储 Prometheus 监控
Exporter + Prometheus + Grafana进行监控
Exporter + Prometheus + Grafana进行监控
379 0
Exporter + Prometheus + Grafana进行监控
|
JSON Prometheus 监控
使用Exporter为Prometheus添加监控对象(持续更新ing)
使用Exporter为Prometheus添加监控对象(持续更新ing)
333 0
|
数据采集 Prometheus 监控
Prometheus 基于Python Django实现Prometheus Exporter
Prometheus 基于Python Django实现Prometheus Exporter
275 0
|
消息中间件 Prometheus 监控
基于 RocketMQ Prometheus Exporter 打造定制化 DevOps 平台
本文将对 RocketMQ-Exporter 的设计实现做一个简单的介绍,读者可通过本文了解到 RocketMQ-Exporter 的实现过程,以及通过 RocketMQ-Exporter 来搭建自己的 RocketMQ 监控系统。RocketMQ 在线可交互教程现已登录知行动手实验室,PC 端登录 start.aliyun.com 即可直达。
419 0
基于 RocketMQ Prometheus Exporter 打造定制化 DevOps 平台