深度学习都需要了解什么?无从下手的话,可以看看这份深度学习速查表

简介: 本文介绍了一些深度学习中的常见概念,如梯度、后向传播、ReLU、Dropout、交叉熵与softmax等,以帮助大家快速了解深度学习。

初次接触深度学习时,大家可能会感到无从下手。这里有一些有关深度学习的技巧和要点可供大家参考。

这些都是什么?

在本篇文章,我们将介绍一些深度学习中的常见概念,以帮助大家快速了解这个神奇的领域。


66c4d07e990bf9176b1793decec1ed025861d49e

梯度可视化。图中红色箭头为蓝色函数对应的梯度。


梯度∇ (Nabla)

梯度是一个函数的偏导数,以多个向量作为输入,并输出一个单一的数值(即神经网络中的代价函数)。当我们需要使函数输出增加时,梯度能够告诉我们输入变量在图中的应变化的方向。我们在深度学习中应用梯度,并使用梯度的反方向来降低我们算法的损失。

后向传播

也称为反向传播,是指在网络中正向传播输入数据之后,反向传播误差并根据误差调整网络权重的过程。这种方法在实际应用时使用了微积分中的链式法则。

Sigmoid σ

用于将网络权重映射至[0, 1]区间的激活函数。该函数在图中的曲线类似一个字母'S',函数因此得名,在希腊语中sigma表示字母S。该函数也被称为logistic函数。


ac34b4a939e5938615ad3ef304001a65dfd550b1

Geoffrey Hinton定义的ReLU计算公式


校正线性单元或ReLU

sigmoid函数的值域限制在[0, 1]区间内,而ReLU的值域为0到正无穷。这意味着,sigmoid更适合logistic回归,而ReLU能够更好地表示正数输出。ReLU不会产生梯度消失问题。


ee92ba69b64dba8654d9748017737edb2ac34bb9

Tanh函数


Tanh

Tanh函数是一个可将你的网络权重初始化为[-1, 1]区间内实数的函数。假设你的数据已经规范化,那么我们会得到一个更大的梯度:因为数据以0为中心分布,函数的导数更高。为了验证这点,我们计算tanh函数的导数,并观察函数在[0, 1]区间内的输入。tanh函数的值域为[-1, 1]区间,而sigmoid函数的值域为[0, 1]区间。这也避免了在梯度中的偏差。


1298617056666ca3cf57818a351c1801b703f772

LSTM/GRU

通常应用于递归神经网络,也可扩展至其他场景使用,其充当小型"记忆单元",能够保持输入数据间的状态,用于模型训练,同时,也可解决梯度消失问题,梯度消失问题会导致递归神经网络在进行大约7次迭代后失去先前输入数据的上下文。

Softmax

Softmax函数通常在神经网络的最后用于模型结果的分类。该函数采用多元logistic回归,通常用于多类别的分类任务。Softmax函数通常与交叉熵共同构成模型的损失函数。

L1范式与L2范式

这些正则化方法通过对系数施加惩罚以避免过拟合。L1范式可产生稀疏模型,而L2范式则不会。范式用于指定模型的复杂度。这至关重要,因为它能够提高模型的泛化能力,防止模型对训练数据过拟合。


db4da18747dc8e8b6d9fac433484d4bc32c9f4e4

Dropout

[1]"它防止模型过拟合,并提供了一种有效的方式,来联合不同的数量接近指数级的神经网络架构"(Hinton)。这种方法在网络中随机选择并剔除显式和隐含的神经元。选择的神经元数量取决于该层设置的dropout百分比。

批规范化

[1]当模型网络层数很深时,会出现内部协变量偏移的问题。这种偏移是指"训练期间网络参数变化所导致的网络输出分布的变化" (Szegedy)。如果我们可以减少内部协变量偏移,那么我们就可以更好更快地训练模型。批规范化通过使用均值与方差对传入网络的各批数据进行规范化处理,进而解决此类问题。

目标函数

也称为损失函数或评价优化函数。网络训练的目的在于最小化损失以最大化网络精度。

F1/F分数

F1/F分数是一种根据准确率与召回率来评估模型预测精度的评价指标,计算公式如下:

F1 = 2 (准确率 召回率) / (准确率 + 召回率)

准确率:在所有预测结果中,预测正确的结果比例为多少?

准确率 = 真阳性结果数 / (真阳性结果数 + 假阳性结果数)

召回率:在所有实际正确的结果中,预测出来的正确结果的比例为多少?

召回率 = 真阳性结果数 / (真阳性结果数 + 假阴性结果数)

交叉熵

交叉熵用于计算预测标签与实际情况的偏差。有时简称为CE。


d71ff6a7c8beffad30f1c224a92752456b05842a

交叉熵是一种损失函数,与热力学中熵的概念相关。交叉熵用于多类别分类场景下预测误差的计算。

本文介绍的内容可能不够全面,如果有任何您觉得有必要补充的内容,欢迎您与我联系。

[1] * 参考自: InflationAaron
数十款阿里云产品限时折扣中,赶紧点击领劵开始云上实践吧!
以上为译文

本文由北邮@爱可可-爱生活 老师推荐,阿里云云栖社区组织翻译。

文章原标题《Deep Learning Cheat Sheet》,作者:Camron Godbout,译者:6816816151

文章为简译,更为详细的内容,请查看原文

相关文章
|
机器学习/深度学习 分布式计算 搜索推荐
这是一张机器&深度学习代码速查表
这是一张机器&深度学习代码速查表
这是一张机器&深度学习代码速查表
|
机器学习/深度学习 算法 大数据
确定不收藏?十张机器学习和深度学习工程师必备速查表!
本文讲的是十张机器学习和深度学习工程师必备速查表,<对于初学者,机器学习和深度学习课程会很困难,此外各类深度学习库也十分难理解。我在Github上创建了一个本地库(https://github.com/kailashahirwar/cheatsheets-ai ),里面包含了从不同渠道收集的速查表,可以直接下载。
3200 0
|
2天前
|
机器学习/深度学习 人工智能
深度学习中的正则化技术及其应用
【9月更文挑战第8天】在深度学习的探索之旅中,正则化技术如同指南针,引导我们穿越过拟合的迷雾。本文将深入浅出地介绍几种常见的正则化方法,并通过实际代码示例揭示它们如何在模型训练中发挥作用。从L1和L2正则化的基本概念出发,到Dropout技术的随机性之美,再到数据增强的多样性魅力,我们将一起见证这些技术如何提升模型的泛化能力。你将发现,正则化不仅是防止过拟合的技术手段,更是深度学习艺术的一部分。让我们开始这段探索之旅,解锁深度学习中正则化的奥秘。
21 10
|
2天前
|
机器学习/深度学习 人工智能 监控
深度学习在图像识别中的应用与挑战
随着人工智能的迅猛发展,深度学习技术在多个领域展现出强大的潜力和价值。特别是在图像识别方面,深度学习不仅推动了技术的边界,也带来了新的商业机会和社会效益。本文将探讨深度学习在图像识别领域的应用,分析其面临的主要挑战,并提出未来可能的发展方向。通过实例和数据支持,我们将深入了解这项技术如何改变我们的工作和生活方式。
|
8天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习在图像识别中的应用与挑战
【9月更文挑战第2天】本文将探讨深度学习技术如何在图像识别领域大放异彩,并分析其面临的主要挑战。我们将通过一个实际的代码示例,展示如何利用深度学习模型进行图像分类任务,从而让读者对深度学习在图像识别中的应用有一个直观的理解。
46 22
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习在图像识别中的应用与挑战
【9月更文挑战第9天】本文旨在探讨深度学习技术在图像识别领域的应用及其面临的挑战。我们将通过一个具体的案例,展示如何使用深度学习模型进行图像分类,并讨论在实际应用中可能遇到的问题和解决方案。
|
3天前
|
机器学习/深度学习 自动驾驶 安全
深度学习在图像识别中的应用与挑战
当深度学习技术遇上图像识别,就像咖啡遇上糖,激发出了无限可能。本文将深入浅出地探索深度学习如何改变图像识别的游戏规则,同时也会揭示这项技术面临的一些甜蜜负担。从卷积神经网络(CNN)的魔法到训练数据集的构建,我们将一起走进深度学习的世界,看看它是如何在图像识别中大放异彩的。准备好了吗?让我们开始这场视觉与智能的盛宴吧!
|
4天前
|
机器学习/深度学习 自然语言处理 自动驾驶
深度学习的奥秘:从基本原理到实际应用
在这篇文章中,我们将探索深度学习的神秘世界。首先,我们将介绍深度学习的基本概念和原理,然后深入探讨其在不同领域的应用。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和思考方式。让我们一起揭开深度学习的面纱,探索其无限可能!
|
6天前
|
机器学习/深度学习 自动驾驶 算法框架/工具
深度学习在图像识别中的应用
【9月更文挑战第4天】本文主要介绍了深度学习在图像识别领域的应用,包括其原理、优点以及一些常见的应用场景。同时,我们还将通过一个简单的代码示例来展示如何使用深度学习进行图像识别。
|
11天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习的浪潮之下:探索其奥秘与应用
在人工智能的星空中,深度学习犹如一颗璀璨的星辰,以其独特的魅力和强大的能力引领着科技的潮流。本文将深入浅出地介绍深度学习的核心概念、关键技术以及在多个领域的实际应用,旨在为读者揭开深度学习神秘的面纱,展示其如何改变我们的生活和工作方式。