Kubernetes(k8s)代码解读-apiserver之list-watch篇

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
简介: apiserver的list-watch代码解读 list-watch,作为k8s系统中统一的异步消息传递方式,对系统的性能、数据一致性起到关键性的作用。今天我想从代码这边探究一下list-watch的实现方式。

apiserver的list-watch代码解读

 list-watch,作为k8s系统中统一的异步消息传递方式,对系统的性能、数据一致性起到关键性的作用。今天我想从代码这边探究一下list-watch的实现方式。并看是否能在后面的工作中优化这个过程。

0. list-watch的需求

20170315101923

上图是一个典型的Pod创建过程,在这个过程中,每次当kubectl创建了ReplicaSet对象后,controller-manager都是通过list-watch这种方式得到了最新的ReplicaSet对象,并执行自己的逻辑来创建Pod对象。其他的几个组件,Scheduler/Kubelet也是一样,通过list-watch得知变化并进行处理。这是组件的处理端代码:

go
c.NodeLister.Store, c.nodePopulator = framework.NewInformer(
 c.createNodeLW(), ...(1) &api.Node{}, ...(2) 0, ...(3)
 framework.ResourceEventHandlerFuncs{ ...(4) AddFunc: c.addNodeToCache, ...(5) UpdateFunc: c.updateNodeInCache, DeleteFunc: c.deleteNodeFromCache, }, ) 

其中(1)是list-watch函数,(4)(5)则是相应事件触发操作的入口。

list-watch操作需要做这么几件事:

  1. 由组件向apiserver而不是etcd发起watch请求,在组件启动时就进行订阅,告诉apiserver需要知道什么数据发生变化。Watch是一个典型的发布-订阅模式。
  2. 组件向apiserver发起的watch请求是可以带条件的,例如,scheduler想要watch的是所有未被调度的Pod,也就是满足Pod.destNode=””的Pod来进行调度操作;而kubelet只关心自己节点上的Pod列表。apiserver向etcd发起的watch是没有条件的,只能知道某个数据发生了变化或创建、删除,但不能过滤具体的值。也就是说对象数据的条件过滤必须在apiserver端而不是etcd端完成。
  3. list是watch失败,数据太过陈旧后的弥补手段,这方面详见 基于list-watch的Kubernetes异步事件处理框架详解-客户端部分。list本身是一个简单的列表操作,和其它apiserver的增删改操作一样,不再多描述细节。

1. watch的API处理

既然watch本身是一个apiserver提供的http restful的API,那么就按照API的方式去阅读它的代码,按照apiserver的基础功能实现一文所描述,我们来看它的代码,

  • 关键的处理API注册代码pkg/apiserver/api_installer.go
func (a *APIInstaller) registerResourceHandlers(path string, storage rest.Storage,... ...
lister, isLister := storage.(rest.Lister)
watcher, isWatcher := storage.(rest.Watcher) ...(1) ... case "LIST": // List all resources of a kind. ...(2)
 doc := "list objects of kind " + kind
 if hasSubresource {
 doc = "list " + subresource + " of objects of kind " + kind
 }
 handler := metrics.InstrumentRouteFunc(action.Verb, resource, ListResource(lister, watcher, reqScope, false, a.minRequestTimeout)) ...(3) 
  1. 一个rest.Storage对象会被转换为watcher和lister对象
  2. 提供list和watch服务的入口是同一个,在API接口中是通过 GET /pods?watch=true 这种方式来区分是list还是watch
  3. API处理函数是由lister和watcher经过ListResource()合体后完成的。
  • 那么就看看ListResource()的具体实现吧,/pkg/apiserver/resthandler.go
func ListResource(r rest.Lister, rw rest.Watcher,... { ... if (opts.Watch || forceWatch) && rw != nil {
 watcher, err := rw.Watch(ctx, &opts) ...(1) ....
 serveWatch(watcher, scope, req, res, timeout) return }
 result, err := r.List(ctx, &opts) ...(2) 
 write(http.StatusOK, scope.Kind.GroupVersion(), scope.Serializer, result, w, req.Request) 
  1. 每次有一个watch的url请求过来,都会调用rw.Watch()创建一个watcher,好吧这里的名字和上面那一层的名字重复了,但我们可以区分开,然后使用serveWatch()来处理这个请求。watcher的生命周期是每个http请求的,这一点非常重要。
  2. list在这里是另外一个分支,和watch分别处理,可以忽略。
  • 响应http请求的过程serveWatch()的代码在/pkg/apiserver/watch.go里面
func serveWatch(watcher watch.Interface... {
server.ServeHTTP(res.ResponseWriter, req.Request) }

func (s *WatchServer) ServeHTTP(w http.ResponseWriter, req *http.Request) { for { select { case event, ok := <-s.watching.ResultChan():

 obj := event.Object if err := s.embeddedEncoder.EncodeToStream(obj, buf); ... } 

这段的操作基本毫无技术含量,就是从watcher的结果channel中读取一个event对象,然后持续不断的编码写入到http response的流当中。

  • 这是整个过程的图形化描述:
    20170315101956

所以,我们的问题就回到了

  1. watcher这个对象,严格来说是watch.Interface的对象,位置在pkg/watch/watch.go中,是怎么被创建出来的?
  2. 这个watcher对象是怎么从etcd中获得变化的数据的?又是怎么过滤条件的?

2. 在代码迷宫中追寻watcher

回到上面的代码追踪过程来看,watcher(watch.Interface)对象是被Rest.Storage对象创建出来的。Rest.Storage分两层,一层是每个对象自己的逻辑,另一层则是通过通用的操作来搞定,像watch这样的操作应该是通用的,所以我们看这个源代码

  • /pkg/registry/generic/registry/store.go
func (e *Store) Watch(ctx api.Context, options *api.ListOptions) (watch.Interface, error) { ... return e.WatchPredicate(ctx, e.PredicateFunc(label, field), resourceVersion) }

func (e *Store) WatchPredicate(ctx api.Context, m generic.Matcher, resourceVersion string) (watch.Interface, error) { return e.Storage.Watch(ctx, key, resourceVersion, filterFunc) ...(1) return e.Storage.WatchList(ctx, e.KeyRootFunc(ctx), resourceVersion, filterFunc) } 

果然,我们在(1)这里找到了生成Watch的函数,但这个工作是由e.Storage来完成的,所以我们需要找一个具体的Storage的生成过程,以Pod为例子

  • /pkg/registry/pod/etcd/etcd.go
func NewStorage(opts generic.RESTOptions, k client.ConnectionInfoGetter, proxyTransport http.RoundTripper) PodStorage {
prefix := "/pods"

storageInterface := opts.Decorator(
 opts.Storage, cachesize.GetWatchCacheSizeByResource(cachesize.Pods), &api.Pod{}, prefix, pod.Strategy, newListFunc) ...(1)

store := &registry.Store{ ... Storage: storageInterface, ...(2) } return PodStorage{ Pod: &REST{store, proxyTransport}, ...(3) 

这(1)就是Storage的生成现场,传入的参数包括了一个缓存Pod的数量。(2)(3)是和上面代码的连接点。那么现在问题就转化为追寻Decorator这个东西具体是怎么生成的,需要重复刚才的过程,往上搜索opts是怎么搞进来的。

/pkg/master/master.go - GetRESTOptionsOrDie() /pkg/genericapiserver/genericapiserver.go - StorageDecorator() /pkg/registry/generic/registry/storage_factory.go - StorageWithCacher() /pkg/storage/cacher.go

OK,这样我们就来到正题,一个具体的watch缓存的实现了!

把上面这个过程用一幅图表示:

20170315102029

3. watch缓存的具体实现

看代码,首要看的是数据结构,以及考虑这个数据结构和需要解决的问题之间的关系。

3.1 Cacher(pkg/storage/cacher.go)

对于cacher这结构来说,我们从外看需求,可以知道这是一个Storage,用于提供某个类型的数据,例如Pod的增删改查请求,同时它又用于watch,用于在client端需要对某个key的变化感兴趣时,创建一个watcher来源源不断的提供新的数据给客户端。

那么cacher是怎么满足这些需求的呢?答案就在它的结构里面:

type Cacher struct { // Underlying storage.Interface.
storage Interface // "sliding window" of recent changes of objects and the current state.
watchCache *watchCache
reflector *cache.Reflector // Registered watchers.
watcherIdx int
watchers map[int]*cacheWatcher
} 

略去里面的锁(在看代码的时候一开始要忽略锁的存在,锁是后期为了避免破坏数据再加上去的,不影响数据流),略去里面的一些非关键的成员,现在我们剩下这3段重要的成员,其中

  • storage是连接etcd的,也就是背后的裸存储
  • watchCache并不仅仅是和注释里面说的那样,是个滑动窗口,里面存储了所有数据+滑动窗口
  • watchers这是为每个请求创建的struct,每个watch的client上来后都会被创建一个,所以这里有个map

当然,这3个成员的作用是我看了所有代码后,总结出来的,一开始读代码时不妨先在脑子里面有个定位,然后在看下面的方法时不断修正这个定位。那么,接下来就看看具体的方法是怎么让数据在这些结构里面流动的吧!

  • 初始化方法
func NewCacherFromConfig(config CacherConfig) *Cacher { ...
 cacher.startCaching(stopCh) }

func (c *Cacher) startCaching(stopChannel <-chan struct{}) { ... if err := c.reflector.ListAndWatch(stopChannel); err != nil {
 glog.Errorf("unexpected ListAndWatch error: %v", err) } } 

其他的部分都是陈词滥调,只有startCaching()这段有点意思,这里启动一个go协程,最后启动了c.reflector.ListAndWatch()这个方法,如果对k8s的基本有了解的话,这个其实就是一个把远端数据源源不断的同步到本地的方法,那么数据落在什么地方呢?往上看可以看到

reflector: cache.NewReflector(listerWatcher, config.Type, watchCache, 0),

也就是说从创建cacher的实例开始,就会从etcd中把所有Pod的数据同步到watchCache里面来。这也就印证了watchCache是数据从etcd过来的第一站。

20170315102038
  • 增删改方法
func (c *Cacher) Create(ctx context.Context, key string, obj, out runtime.Object, ttl uint64) error { return c.storage.Create(ctx, key, obj, out, ttl) } 大部分方法都很无聊,就是短路到底层的storage直接执行。
  • Watch方法
// Implements storage.Interface.
func (c *Cacher) Watch(ctx context.Context, key string, resourceVersion string, filter FilterFunc) (watch.Interface, error) {

initEvents, err := c.watchCache.GetAllEventsSinceThreadUnsafe(watchRV)

watcher := newCacheWatcher(watchRV, initEvents, filterFunction(key, c.keyFunc, filter), forgetWatcher(c, c.watcherIdx))
c.watchers[c.watcherIdx] = watcher
c.watcherIdx++ return watcher, nil } 

这里的逻辑就比较清晰,首先从watchCache中拿到从某个resourceVersion以来的所有数据——initEvents,然后用这个数据创建了一个watcher返回出去为某个客户端提供服务。

  • List方法
// Implements storage.Interface.
func (c *Cacher) List(ctx context.Context, key string, resourceVersion string, filter FilterFunc, listObj runtime.Object) error {

filterFunc := filterFunction(key, c.keyFunc, filter)

objs, readResourceVersion, err := c.watchCache.WaitUntilFreshAndList(listRV) if err != nil { return fmt.Errorf("failed to wait for fresh list: %v", err) } for _, obj := range objs { if filterFunc(object) {
 listVal.Set(reflect.Append(listVal, reflect.ValueOf(object).Elem())) } } } 

从这段代码中我们可以看出2件事,一是list的数据都是从watchCache中获取的,二是获取后通过filterFunc过滤了一遍然后返回出去。

20170315102052

3.2 WatchCache(pkg/storage/watch_cache.go)

这个结构应该是缓存的核心结构,从上一层的代码分析中我们已经知道了对这个结构的需求,包括存储所有这个类型的数据,包括当有新的数据过来时把数据扔到cacheWatcher里面去,总之,提供List和Watch两大输出。

type watchCache struct { // cache is used a cyclic buffer - its first element (with the smallest // resourceVersion) is defined by startIndex, its last element is defined // by endIndex (if cache is full it will be startIndex + capacity). // Both startIndex and endIndex can be greater than buffer capacity - // you should always apply modulo capacity to get an index in cache array.
cache []watchCacheElement
startIndex int
endIndex int // store will effectively support LIST operation from the "end of cache // history" i.e. from the moment just after the newest cached watched event. // It is necessary to effectively allow clients to start watching at now.
store cache.Store } 

这里的关键数据结构依然是2个

  • cache 环形队列,存储有限个数的最新数据
  • store 底层实际上是个线程安全的hashMap,存储全量数据

那么继续看看方法是怎么运转的吧~

  • 增删改方法
func (w *watchCache) Update(obj interface{}) error { event := watch.Event{Type: watch.Modified, Object: object}
f := func(obj runtime.Object) error { return w.store.Update(obj) } return w.processEvent(event, resourceVersion, f) }


func (w *watchCache) processEvent(event watch.Event, resourceVersion uint64, updateFunc func(runtime.Object) error) error {

previous, exists, err := w.store.Get(event.Object)
watchCacheEvent := watchCacheEvent{event.Type, event.Object, prevObject, resourceVersion}
 w.onEvent(watchCacheEvent)
w.updateCache(resourceVersion, watchCacheEvent) } // Assumes that lock is already held for write.
func (w *watchCache) updateCache(resourceVersion uint64, event watchCacheEvent) {
w.cache[w.endIndex%w.capacity] = watchCacheElement{resourceVersion, event}
w.endIndex++ } 

所有的增删改方法做的事情都差不多,就是在store里面存具体的数据,然后调用processEvent()去增加环形队列里面的数据,如果详细看一下onEvent的操作,就会发现这个操作的本质是落在cacher.go里面:

func (c *Cacher) processEvent(event watchCacheEvent) { for _, watcher := range c.watchers {

watcher.add(event)

}

}

往所有的watcher里面挨个添加数据。总体来说,我们可以从上面的代码中得出一个结论:cache里面存储的是Event,也就是有prevObject的,对于所有操作都会在cache里面保存,但对于store来说,只存储当下的数据,删了就删了,改了就改了。

20170315102101
  • WaitUntilFreshAndList()

这里本来应该讨论List()方法的,但在cacher里面的List()实际上使用的是这个,所以我们看这个方法。

func (w *watchCache) WaitUntilFreshAndList(resourceVersion uint64) ([]interface{}, uint64, error) {
startTime := w.clock.Now()
go func() {
 w.cond.Broadcast() }() for w.resourceVersion < resourceVersion {
 w.cond.Wait() } return w.store.List(), w.resourceVersion, nil } 

这个方法比较绕,前面使用了一堆cond通知来和其他协程通信,最后还是调用了store.List()把数据返回出去。后面来具体分析这里的协调机制。

  • GetAllEventsSinceThreadUnsafe()

这个方法在cacher的创建cacheWatcher里面使用,把当前store里面的所有数据都搞出来,然后把store里面的数据都转换为AddEvent,配上cache里面的Event,全部返回出去。

3.3 CacheWatcher(pkg/storage/cacher.go)

这个结构是每个watch的client都会拥有一个的,从上面的分析中我们也能得出这个结构的需求,就是从watchCache里面搞一些数据,然后写到客户端那边。

// cacherWatch implements watch.Interface
type cacheWatcher struct {
sync.Mutex
input chan watchCacheEvent
result chan watch.Event
filter FilterFunc
stopped bool
forget func(bool) } 

这段代码比较简单,就不去分析方法了,简单说就是数据在增加的时候放到input这个channel里面去,通过filter然后输出到result这个channel里面去。

4. 结语

这里的代码分析比较冗长,但从中可以得出看代码的一般逻辑:

  • 把数据结构和需求对比着看
  • 碰到逻辑复杂的画个图来进行记忆
  • 在分析的时候把想到的问题记录下来,然后在后面专门去考虑

这里我看完代码后有这些问题:

  • 这个cache机制是list-watch操作中最短的板吗?
  • 在实际生产中,对这List和Wath的使用频率和方式是怎么样的?显然这两者存在竞争关系
  • 目前的数据结构是否是最优的?还有更好的方式吗?
  • 需要一个单元测试来对性能进行测试,然后作为调优的基础
  • etcd v3的一些代码对我们的机制有什么影响?这个目录在/pkg/storage/etcd3里面
本文转自中文社区-Kubernetes(k8s)代码解读-apiserver之list-watch篇
相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
17天前
|
Kubernetes 负载均衡 Cloud Native
云原生应用:Kubernetes在容器编排中的实践与挑战
【10月更文挑战第27天】Kubernetes(简称K8s)是云原生应用的核心容器编排平台,提供自动化、扩展和管理容器化应用的能力。本文介绍Kubernetes的基本概念、安装配置、核心组件(如Pod和Deployment)、服务发现与负载均衡、网络配置及安全性挑战,帮助读者理解和实践Kubernetes在容器编排中的应用。
47 4
|
17天前
|
Kubernetes 监控 Cloud Native
云原生应用:Kubernetes在容器编排中的实践与挑战
【10月更文挑战第26天】随着云计算技术的发展,容器化成为现代应用部署的核心趋势。Kubernetes(K8s)作为容器编排领域的佼佼者,以其强大的可扩展性和自动化能力,为开发者提供了高效管理和部署容器化应用的平台。本文将详细介绍Kubernetes的基本概念、核心组件、实践过程及面临的挑战,帮助读者更好地理解和应用这一技术。
51 3
|
1月前
|
Kubernetes API 调度
中间层 k8s(Kubernetes) 到底是什么,架构是怎么样的?
中间层 k8s(Kubernetes) 到底是什么,架构是怎么样的?
48 3
|
1月前
|
Kubernetes 应用服务中间件 nginx
k8s学习--kubernetes服务自动伸缩之水平收缩(pod副本收缩)VPA策略应用案例
k8s学习--kubernetes服务自动伸缩之水平收缩(pod副本收缩)VPA策略应用案例
|
1月前
|
Kubernetes 监控 调度
k8s学习--kubernetes服务自动伸缩之垂直伸缩(资源伸缩)VPA详细解释与安装
k8s学习--kubernetes服务自动伸缩之垂直伸缩(资源伸缩)VPA详细解释与安装
|
1月前
|
运维 Kubernetes Cloud Native
云原生时代的容器编排:Kubernetes入门与实践
【10月更文挑战第4天】在云计算的浪潮中,云原生技术以其敏捷、可扩展和高效的特点引领着软件开发的新趋势。作为云原生生态中的关键组件,Kubernetes(通常被称为K8s)已成为容器编排的事实标准。本文将深入浅出地介绍Kubernetes的基本概念,并通过实际案例引导读者理解如何利用Kubernetes进行高效的容器管理和服务部署。无论你是初学者还是有一定经验的开发者,本文都将为你打开云原生世界的大门,并助你一臂之力在云原生时代乘风破浪。
|
1月前
|
Kubernetes Cloud Native 流计算
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
73 0
|
1月前
|
Kubernetes 网络协议 安全
[kubernetes]二进制方式部署单机k8s-v1.30.5
[kubernetes]二进制方式部署单机k8s-v1.30.5
|
23天前
|
JSON Kubernetes 容灾
ACK One应用分发上线:高效管理多集群应用
ACK One应用分发上线,主要介绍了新能力的使用场景
|
24天前
|
Kubernetes 持续交付 开发工具
ACK One GitOps:ApplicationSet UI简化多集群GitOps应用管理
ACK One GitOps新发布了多集群应用控制台,支持管理Argo CD ApplicationSet,提升大规模应用和集群的多集群GitOps应用分发管理体验。