深度学习目标检测系列:一文弄懂YOLO算法|附Python源码

简介: 本文是目标检测系列文章——YOLO算法,介绍其基本原理及实现细节,并用python实现,方便读者上手体验目标检测的乐趣。

       在之前的文章中,介绍了计算机视觉领域中目标检测的相关方法——RCNN系列算法原理,以及Faster RCNN的实现。这些算法面临的一个问题,不是端到端的模型,几个构件拼凑在一起组成整个检测系统,操作起来比较复杂,本文将介绍另外一个端到端的方法——YOLO算法,该方法操作简便且仿真速度快,效果也不差。

1

YOLO算法是什么?

       YOLO框架(You Only Look Once)与RCNN系列算法不一样,是以不同的方式处理对象检测。它将整个图像放在一个实例中,并预测这些框的边界框坐标和及所属类别概率。使用YOLO算法最大优的点是速度极快,每秒可处理45帧,也能够理解一般的对象表示。

YOLO框架如何运作?

       在本节中,将介绍YOLO用于检测给定图像中的对象的处理步骤。

  • 首先,输入图像:

2

  • 然后,YOLO将输入图像划分为网格形式(例如3 X 3):

3

  • 最后,对每个网格应用图像分类和定位处理,获得预测对象的边界框及其对应的类概率。

       整个过程是不是很清晰,下面逐一详细介绍。首先需要将标记数据传递给模型以进行训练。假设已将图像划分为大小为3 X 3的网格,且总共只有3个类别,分别是行人(c1)、汽车(c2)和摩托车(c3)。因此,对于每个单元格,标签y将是一个八维向量:

4


其中:

  • pc定义对象是否存在于网格中(存在的概率);
  • bx、by、bh、bw指定边界框;
  • c1、c2、c3代表类别。如果检测对象是汽车,则c2位置处的值将为1,c1和c3处的值将为0;

       假设从上面的例子中选择第一个网格:

5


       由于此网格中没有对象,因此pc将为零,此网格的y标签将为:

6


        意味着其它值是什么并不重要,因为网格中没有对象。下面举例另一个有车的网格(c2=1):

7


       在为此网格编写y标签之前,首先要了解YOLO如何确定网格中是否存在实际对象。大图中有两个物体(两辆车),因此YOLO将取这两个物体的中心点,物体将被分配到包含这些物体中心的网格中。中心点左侧网格的y标签会是这样的:

8


       由于此网格中存在对象,因此pc将等于1,bx、by、bh、bw将相对于正在处理的特定网格单元计算。由于检测出的对象是汽车,所以 c2=1,c1和c3均为0。对于9个网格中的每一个单元格,都具有八维输出向量。最终的输出形状为 3X3X8
       使用上面的例子(输入图像: 100X100X3,输出: 3X3X8),模型将按如下方式进行训练:

9


       使用经典的CNN网络构建模型,并进行模型训练。在测试阶段,将图像传递给模型,经过一次前向传播就得到输出y。为了简单起见,使用 3X3网格解释这一点,但通常在实际场景中会采用更大的网格(比如 19X19)。
       即使一个对象跨越多个网格,它也只会被分配到其中点所在的单个网格。可以通过增加更多网格来减少多个对象出现在同一网格单元中的几率。

如何编码边界框?

       如前所述,bx、by、bh和bw是相对于正在处理的网格单元计算而言的。下面通过一个例子来说明这一点。以包含汽车的右边网格为例:

10


       由于bx、by、bh和bw将仅相对于该网格计算。此网格的y标签将为:

11


       由于这个网格中有一个对象汽车,所以 pc=1c2=1。现在,看看如何决定bx、by、bh和bw的取值。在YOLO中,分配给所有网格的坐标都如下图所示:

12


       bx、by是对象相对于该网格的中心点的x和y坐标。在例子中,近似 bx=0.4by=0.3

13


       bh是边界框的高度与相应单元网格的高度之比,在例子中约为0.9: bh=0.9,bw是边界框的宽度与网格单元的宽度之比, bw=0.5。此网格的y标签将为:

14


       请注意,bx和by将始终介于0和1之间,因为中心点始终位于网格内,而在边界框的尺寸大于网格尺寸的情况下,bh和bw可以大于1。

非极大值抑制|Non-Max Suppression

       这里有一些思考的问题——如何判断预测的边界框是否是一个好结果(或一个坏结果)?单元格之间的交叉点,计算实际边界框和预测的边界框的并集交集。假设汽车的实际和预测边界框如下所示:

15


       其中,红色框是实际的边界框,蓝色框是预测的边界框。如何判断它是否是一个好的预测呢?IoU将计算这两个框的并集交叉区域:

16

  • IoU =交叉面积/联合的面积;
  • 在本例中:

    • IoU =黄色面积/绿色面积;

       如果IoU大于0.5,就可以说预测足够好。0.5是在这里采取的任意阈值,也可以根据具体问题进行更改。阈值越大,预测就越准确。
       还有一种技术可以显着提高YOLO的效果——非极大值抑制。
       对象检测算法最常见的问题之一是,它不是一次仅检测出一次对象,而可能获得多次检测结果。假设:

17


       上图中,汽车不止一次被识别,那么如何判定边界框呢。非极大值抑可以解决这个问题,使得每个对象只能进行一次检测。下面了解该方法的工作原理。

  • 1.它首先查看与每次检测相关的概率并取最大的概率。在上图中,0.9是最高概率,因此首先选择概率为0.9的方框:

18

  • 2.现在,它会查看图像中的所有其他框。与当前边界框较高的IoU的边界框将被抑制。因此,在示例中,0.6和0.7概率的边界框将被抑制:

19

  • 3.在部分边界框被抑制后,它会从概率最高的所有边界框中选择下一个,在例子中为0.8的边界框:

20

  • 4.再次计算与该边界框相连边界框的IoU,去掉较高IoU值的边界框:

21

  • 5.重复这些步骤,得到最后的边界框:

22

       以上就是非极大值抑制的全部内容,总结一下关于非极大值抑制算法的要点:

  • 丢弃概率小于或等于预定阈值(例如0.5)的所有方框;
  • 对于剩余的边界框:
  • 选择具有最高概率的边界框并将其作为输出预测;
  • 计算相关联的边界框的IoU值,舍去IoU大于阈值的边界框;
  • 重复步骤2,直到所有边界框都被视为输出预测或被舍弃;

Anchor Boxes

       在上述内容中,每个网格只能识别一个对象。但是如果单个网格中有多个对象呢?这就行需要了解 Anchor Boxes的概念。假设将下图按照3X3网格划分:

23


       获取对象的中心点,并根据其位置将对象分配给相应的网格。在上面的示例中,两个对象的中心点位于同一网格中:

24


       上述方法只会获得两个边界框其中的一个,但是如果使用Anchor Boxes,可能会输出两个边界框!我们该怎么做呢?首先,预先定义两种不同的形状,称为Anchor Boxes。对于每个网格将有两个输出。这里为了易于理解,这里选取两个Anchor Boxes,也可以根据实际情况增加Anchor Boxes的数量:

25

  • 没有Anchor Boxes的YOLO输出标签如下所示:

26

  • 有Anchor Boxes的YOLO输出标签如下所示:

27


       前8行属于Anchor Boxes1,其余8行属于Anchor Boxes2。基于边界框和框形状的相似性将对象分配给Anchor Boxes。由于Anchor Boxes1的形状类似于人的边界框,后者将被分配给Anchor Boxes1,并且车将被分配给Anchor Boxes2.在这种情况下的输出,将是 3X3X16大小。
       因此,对于每个网格,可以根据Anchor Boxes的数量检测两个或更多个对象。

结合思想

       在本节中,首先介绍如何训练YOLO模型,然后是新的图像进行预测。

训练

       训练模型时,输入数据是由图像及其相应的y标签构成。样例如下:

28


       假设每个网格有两个Anchor Boxes,并划分为 3X3网格,并且有3个不同的类别。因此,相应的y标签具有 3X3X16的形状。训练过程的完成方式就是将特定形状的图像映射到对应 3X3X16大小的目标。

测试

       对于每个网格,模型将预测·3X3X16·大小的输出。该预测中的16个值将与训练标签的格式相同。前8个值将对应于Anchor Boxes1,其中第一个值将是该网络中对象的概率,2-5的值将是该对象的边界框坐标,最后三个值表明对象属于哪个类。以此类推。
       最后,非极大值抑制方法将应用于预测框以获得每个对象的单个预测结果。
       以下是YOLO算法遵循的确切维度和步骤:

  • 准备对应的图像(608,608,3);
  • 将图像传递给卷积神经网络(CNN),该网络返回(19,19,5,85)维输出;
  • 输出的最后两个维度被展平以获得(19,19,425)的输出量:

    • 19×19网格的每个单元返回425个数字;
    • 425=5 * 85,其中5是每个网格的Anchor Boxes数量;
    • 85= 5+80,其中5表示(pc、bx、by、bh、bw),80是检测的类别数;
  • 最后,使用IoU和非极大值抑制去除重叠框;

YOLO算法实现

       本节中用于实现YOLO的代码来自Andrew NG的[GitHub存储库],需要下载此[zip文件],其中包含运行此代码所需的预训练权重。
       首先定义一些函数,这些函数将用来选择高于某个阈值的边界框,并对其应用非极大值抑制。首先,导入所需的库:

import os
import matplotlib.pyplot as plt
from matplotlib.pyplot import imshow
import scipy.io
import scipy.misc
import numpy as np
import pandas as pd
import PIL
import tensorflow as tf
from skimage.transform import resize
from keras import backend as K
from keras.layers import Input, Lambda, Conv2D
from keras.models import load_model, Model
from yolo_utils import read_classes, read_anchors, generate_colors, preprocess_image, draw_boxes, scale_boxes
from yad2k.models.keras_yolo import yolo_head, yolo_boxes_to_corners, preprocess_true_boxes, yolo_loss, yolo_body

%matplotlib inline

然后,实现基于概率和阈值过滤边界框的函数:

def yolo_filter_boxes(box_confidence, boxes, box_class_probs, threshold = .6):
    box_scores = box_confidence*box_class_probs
    box_classes = K.argmax(box_scores,-1)
    box_class_scores = K.max(box_scores,-1)
    filtering_mask = box_class_scores>threshold
    scores = tf.boolean_mask(box_class_scores,filtering_mask)
    boxes = tf.boolean_mask(boxes,filtering_mask)
    classes = tf.boolean_mask(box_classes,filtering_mask)
 
    return scores, boxes, classes

之后,实现计算IoU的函数:

def iou(box1, box2):
    xi1 = max(box1[0],box2[0])
    yi1 = max(box1[1],box2[1])
    xi2 = min(box1[2],box2[2])
    yi2 = min(box1[3],box2[3])
    inter_area = (yi2-yi1)*(xi2-xi1)
    box1_area = (box1[3]-box1[1])*(box1[2]-box1[0])
    box2_area = (box2[3]-box2[1])*(box2[2]-box2[0])
    union_area = box1_area+box2_area-inter_area
    iou = inter_area/union_area
 
    return iou

然后,实现非极大值抑制的函数:

def yolo_non_max_suppression(scores, boxes, classes, max_boxes = 10, iou_threshold = 0.5):
    max_boxes_tensor = K.variable(max_boxes, dtype='int32')
    K.get_session().run(tf.variables_initializer([max_boxes_tensor]))
    nms_indices = tf.image.non_max_suppression(boxes,scores,max_boxes,iou_threshold)
    scores = K.gather(scores,nms_indices)
    boxes = K.gather(boxes,nms_indices)
    classes = K.gather(classes,nms_indices)

    return scores, boxes, classes

随机初始化下大小为(19,19,5,85)的输出向量:

yolo_outputs = (tf.random_normal([19, 19, 5, 1], mean=1, stddev=4, seed = 1),
                   tf.random_normal([19, 19, 5, 2], mean=1, stddev=4, seed = 1),
                   tf.random_normal([19, 19, 5, 2], mean=1, stddev=4, seed = 1),
                   tf.random_normal([19, 19, 5, 80], mean=1, stddev=4, seed = 1))

最后,实现一个将CNN的输出作为输入并返回被抑制的边界框的函数:

def yolo_eval(yolo_outputs, image_shape = (720., 1280.), max_boxes=10, score_threshold=.6, iou_threshold=.5):
    box_confidence, box_xy, box_wh, box_class_probs = yolo_outputs
    boxes = yolo_boxes_to_corners(box_xy, box_wh)
    scores, boxes, classes = yolo_filter_boxes(box_confidence, boxes, box_class_probs, threshold = score_threshold)
    boxes = scale_boxes(boxes, image_shape)
    scores, boxes, classes = yolo_non_max_suppression(scores, boxes, classes, max_boxes, iou_threshold)

    return scores, boxes, classes

使用yolo_eval函数对之前创建的随机输出向量进行预测:

scores, boxes, classes = yolo_eval(yolo_outputs)
with tf.Session() as test_b:
    print("scores[2] = " + str(scores[2].eval()))
    print("boxes[2] = " + str(boxes[2].eval()))
    print("classes[2] = " + str(classes[2].eval()))

29


score表示对象在图像中的可能性, boxes返回检测到的对象的(x1,y1,x2,y2)坐标, classes表示识别对象所属的类。
现在,在新的图像上使用预训练的YOLO算法,看看其工作效果:

sess = K.get_session()
class_names = read_classes("model_data/coco_classes.txt")
anchors = read_anchors("model_data/yolo_anchors.txt")

yolo_model = load_model("model_data/yolo.h5")

在加载类别信息和预训练模型之后,使用上面定义的函数来获取·yolo_outputs·。

yolo_outputs = yolo_head(yolo_model.output, anchors, len(class_names))

之后,定义一个函数来预测边界框并在图像上标记边界框:

def predict(sess, image_file):
    image, image_data = preprocess_image("images/" + image_file, model_image_size = (608, 608))
    out_scores, out_boxes, out_classes = sess.run([scores, boxes, classes], feed_dict={yolo_model.input: image_data, K.learning_phase(): 0})

    print('Found {} boxes for {}'.format(len(out_boxes), image_file))

    # Generate colors for drawing bounding boxes.
    colors = generate_colors(class_names)

    # Draw bounding boxes on the image file
    draw_boxes(image, out_scores, out_boxes, out_classes, class_names, colors)

    # Save the predicted bounding box on the image
    image.save(os.path.join("out", image_file), quality=90)

    # Display the results in the notebook
    output_image = scipy.misc.imread(os.path.join("out", image_file))

    plt.figure(figsize=(12,12))
    imshow(output_image)

    return out_scores, out_boxes, out_classes

接下来,将使用预测函数读取图像并进行预测:

img = plt.imread('images/img.jpg')
image_shape = float(img.shape[0]), float(img.shape[1])
scores, boxes, classes = yolo_eval(yolo_outputs, image_shape)

最后,输出预测结果:

out_scores, out_boxes, out_classes = predict(sess, "img.jpg")

31


以上就是YOLO算法的全部内容,更多详细内容可以关注[darknet的官网]。

作者信息

PULKIT SHARMA,机器学习和深度学习
本文由阿里云云栖社区组织翻译。
文章原标题《A Practical Guide to Object Detection using the Popular YOLO Framework – Part III (with Python codes)》,译者:海棠,审校:Uncle_LLD。

相关文章
|
3月前
|
机器学习/深度学习 监控 算法
基于mediapipe深度学习的手势数字识别系统python源码
本内容涵盖手势识别算法的相关资料,包括:1. 算法运行效果预览(无水印完整程序);2. 软件版本与配置环境说明,提供Python运行环境安装步骤;3. 部分核心代码,完整版含中文注释及操作视频;4. 算法理论概述,详解Mediapipe框架在手势识别中的应用。Mediapipe采用模块化设计,包含Calculator Graph、Packet和Subgraph等核心组件,支持实时处理任务,广泛应用于虚拟现实、智能监控等领域。
|
2月前
|
机器学习/深度学习 存储 监控
基于深度学习YOLO框架的城市道路损伤检测与评估项目系统【附完整源码+数据集】
本项目基于深度学习的YOLO框架,成功实现了城市道路损伤的自动检测与评估。通过YOLOv8模型,我们能够高效地识别和分类路面裂缝、井盖移位、坑洼路面等常见的道路损伤类型。系统的核心优势在于其高效性和实时性,能够实时监控城市道路,自动标注损伤类型,并生成损伤评估报告。
115 0
基于深度学习YOLO框架的城市道路损伤检测与评估项目系统【附完整源码+数据集】
|
2月前
|
机器学习/深度学习 自动驾驶 算法
基于深度学习的YOLO框架的7种交通场景识别项目系统【附完整源码+数据集】
在智慧交通和智能驾驶日益普及的今天,准确识别复杂交通场景中的关键元素已成为自动驾驶系统的核心能力之一。传统的图像处理技术难以适应高动态、复杂天气、多目标密集的交通环境,而基于深度学习的目标检测算法,尤其是YOLO(You Only Look Once)系列,因其检测速度快、精度高、可部署性强等特点,在交通场景识别中占据了重要地位。
242 0
基于深度学习的YOLO框架的7种交通场景识别项目系统【附完整源码+数据集】
|
2月前
|
算法 数据可视化 数据挖掘
基于EM期望最大化算法的GMM参数估计与三维数据分类系统python源码
本内容展示了基于EM算法的高斯混合模型(GMM)聚类实现,包含完整Python代码、运行效果图及理论解析。程序使用三维数据进行演示,涵盖误差计算、模型参数更新、结果可视化等关键步骤,并附有详细注释与操作视频,适合学习EM算法与GMM模型的原理及应用。
|
2月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
50 1
|
2月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
63 4
|
3月前
|
机器学习/深度学习 运维 监控
实时异常检测实战:Flink+PAI 算法模型服务化架构设计
本文深入探讨了基于 Apache Flink 与阿里云 PAI 构建的实时异常检测系统。内容涵盖技术演进、架构设计、核心模块实现及金融、工业等多领域实战案例,解析流处理、模型服务化、状态管理等关键技术,并提供性能优化与高可用方案,助力企业打造高效智能的实时异常检测平台。
225 1
|
3月前
|
PyTorch 算法框架/工具 C++
人工智能算法python程序运行环境安装步骤整理
本教程详细介绍Python与AI开发环境的配置步骤,涵盖软件下载、VS2017安装、Anaconda配置、PyCharm设置及组件安装等内容,适用于Windows系统,助你快速搭建开发环境。
|
2月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
56 0

热门文章

最新文章