Spark 读取 Hbase 优化 --手动划分 region 提高并行数

简介:

一. Hbase 的 region

我们先简单介绍下 Hbase 的 架构和 region :

从物理集群的角度看,Hbase 集群中,由一个 Hmaster 管理多个 HRegionServer,其中每个 HRegionServer 都对应一台物理机器,一台 HRegionServer 服务器上又可以有多个 Hregion(以下简称 region)。要读取一个数据的时候,首先要先找到存放这个数据的 region。而 Spark 在读取 Hbase 的时候,读取的 Rdd 会根据 Hbase 的 region 数量划分 stage。所以当 region 存储设置得比较大导致 region 比较少,而 spark 的 cpu core 又比较多的时候,就会出现无法充分利用 spark 集群所有 cpu core 的情况。

我们再从逻辑表结构的角度看看 Hbase 表和 region 的关系。

  • Hbase是通过把数据分配到一定数量的region来达到负载均衡的。一个table会被分配到一个或多个region中,这些region会被分配到一个或者多个regionServer中。在自动split策略中,当一个region达到一定的大小就会自动split成两个region。
  • Region由一个或者多个Store组成,每个store保存一个columns family,每个Strore又由一个memStore和0至多个StoreFile 组成。memStore存储在内存中, StoreFile存储在HDFS上
  • region是HBase中分布式存储和负载均衡的最小单元。不同Region分布到不同RegionServer上,但并不是存储的最小单元。

二. Spark 读取 Hbase 优化及 region 手动拆分

在用spark的时候,spark正是根据hbase有多少个region来划分stage。也就是说region划分得太少会导致spark读取时的并发度太低,浪费性能。但如果region数目太多就会造成读写性能下降,也会增加ZooKeeper的负担。所以设置每个region的大小就很关键了。

自0.94.0版本以来,split还有三种策略可以选择,不过一般使用默认的分区策略就可以满足需求,我们要修改的是会触发 region 分区的存储容量大小。

而在0.94.0版本中,默认的 region 大小为10G,就是说当存储的数据达到 10 G 的时候,就会触发 region 分区操作。有时候这个值可能太大,这时候就需要修改配置了。我们可以在 HBASE_HOME/conf/hbase-site.xml 文件中,增加如下配置:

<property> 
<name>hbase.hregion.max.filesize</name> 
<value>536870912</value>
</property>

其中的 value 值就是你要修改的触发 region 分区的大小,要注意这个值是以 bit 为单位的,这里是将region文件的大小改为512m。

修改之后我们就可以手动 split region了,手动分区会自动根据这个新的配置值大小,将 region 已经存储起来的数据进行再次进行拆分。

我们可以在 hbase shell 中使用 split 来进行操作,有以下几种方式可以进行手动拆分。

split ‘tableName’ 
split ‘namespace:tableName’ 
split ‘regionName’ # format: ‘tableName,startKey,id’ 
split ‘tableName’, ‘splitKey’ 
split ‘regionName’, ‘splitKey’

这里使用的是 split ‘namespace:tableName’ 这种方式。其中 tableName 自不必多说,就是要拆分的表名,namespace可以在hbase的web界面中查看,一般会是default。

使用命令之后稍等一会,hbase会根据新的region文件大小去split,最终结果可以在web-ui的"table Details"一栏,点击具体table查看。

以上~

相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
&nbsp; 相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情:&nbsp;https://cn.aliyun.com/product/hbase &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
8月前
|
Java Shell 分布式数据库
【大数据技术Hadoop+Spark】HBase数据模型、Shell操作、Java API示例程序讲解(附源码 超详细)
【大数据技术Hadoop+Spark】HBase数据模型、Shell操作、Java API示例程序讲解(附源码 超详细)
166 0
|
8月前
|
机器学习/深度学习 分布式计算 Hadoop
一种HBase表数据迁移方法的优化
一种HBase表数据迁移方法的优化
96 0
|
2月前
|
分布式计算 监控 大数据
如何优化Spark中的shuffle操作?
【10月更文挑战第18天】
|
3月前
|
存储 分布式计算 监控
Spark如何优化?需要注意哪些方面?
【10月更文挑战第10天】Spark如何优化?需要注意哪些方面?
50 6
|
3月前
|
存储 分布式计算 Hadoop
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
68 2
|
3月前
|
分布式计算 Java 大数据
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
48 0
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
|
3月前
|
SQL 分布式计算 大数据
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
53 0
|
5月前
|
存储 分布式计算 供应链
Spark在供应链核算中应用问题之通过Spark UI进行任务优化如何解决
Spark在供应链核算中应用问题之通过Spark UI进行任务优化如何解决
|
5月前
|
缓存 监控 Java
"Java垃圾回收太耗时?阿里HBase GC优化秘籍大公开,让你的应用性能飙升90%!"
【8月更文挑战第17天】阿里巴巴在HBase实践中成功将Java垃圾回收(GC)时间降低90%。通过选用G1垃圾回收器、精细调整JVM参数(如设置堆大小、目标停顿时间等)、优化代码减少内存分配(如使用对象池和缓存),并利用监控工具分析GC行为,有效缓解了高并发大数据场景下的性能瓶颈,极大提升了系统运行效率。
113 4
|
5月前
|
分布式计算 并行计算 数据处理