通俗易懂,C#如何安全、高效地玩转任何种类的内存之Memory<T>(三)

简介: 通俗易懂,C#如何安全、高效地玩转任何种类的内存之Memory<T>

前言

我们都知道,.Net Core是微软推出的一个通用开发平台,它是跨平台和开源的,由一个.NET运行时、一组可重用的框架库、一组SDK工具和语言编译器组成,旨在让.Net developers可以更容易地编写高性能的服务应用程序和基于云的可伸缩服务,比如微服务、物联网、云原生等等;在这些场景下,对于内存的消耗往往十分敏感,也十分苛刻;为了解决这个棘手问题,同时释放应用开发人员的精力,让他们能够安心地使用Net Core,而不用担心这些应用场景下的性能问题,故从.NET Core 2.1开始引进了两个新的旗舰类型:Span<T>Memory<T> ,使用它们可以避免分配缓冲区和不必要的数据复制

前面已经对span做了详细地讲解,所以今天主题是Memory,同样以Why、What和How的方式缓缓道来 ,让你知其然,更知其所以然。

Memory<T>是Span的补充,它是为了解决Span无法驻留到堆上而诞生的,可以说Span是Memory的奠基,故在读这篇文章前,请先仔细品读前面两篇文章:

现在,作者就当你已经阅读了前面的博客,并明白了Span的本质(ref-like type)和秉性特点(stack-only)。

why - 为什么需要memory ?

span的局限性

  1. span只能存储到执行栈上,保障操作效率与数组一样高,并提供稳定的生命周期。
  2. span不能被装箱到堆上,避免栈撕裂问题。
  3. span不能用作泛型类型参数
  4. Span不能作为类的字段
  5. Span不能实现任何接口
  6. Span不能用于异步方法,因为无法跨越await边界,所有无法跨异步操作暂留。

下面来看一个例子:

async Task DoSomethingAsync(Span<byte> buffer) {// 这里编译器会提示报错,作为例子而已,请忽略。
    buffer[0] = 0;
    await Something(); // 异步方法会释放当前执行栈,那么Span也被回收了。
    buffer[0] = 1; // 这里buffer将无法继续。
}

备注:C#编译器和core运行时内部会强制验证Span的局限性,所以上面例子才会编译不过。

正是因为这些局限性,确保了更高效、安全的内存访问

也是因为这些局限性,无法用于需要将引用数据存储到堆上的一些高级应用场景,比如:异步方法、类字段、泛型参数、集合成员、lambda表达式、迭代器等

还是因为这些局限性,增加了span对于高层开发人员的复杂性

所以Memory<T>诞生了,作为span的补充,它就是目前的解决方案,没有之一,也是高层开发人员日后使用最普遍的类型。

what - memory是什么 ?

Span<T>一样,也是sliceable type ,但它不是ref-like type ,就是普通的C#结构体。这意味着,可以将它装箱到堆上、作为类的字段或异步方法的参数、保存到集合等等,对于高层开发人员非常友好,嘿嘿,并且当需要处理Memory底层缓冲区,即做同步处理时,直接调用它的Span属性,同时又获得了高效的索引能力。

备注:Memory<T>表示一段可读写的连续内存区域,ReadOnlyMemory表示一段只读的连续内存区域。

static async Task<uint> ChecksumReadAsync(Memory<byte> buffer, Stream stream)
{
    var bytesRead = await stream.ReadAsync(buffer);
    // 需要同步处理时,直接调用span属性。
    return SafeSum(buffer.Span.Slice(0, bytesRead));
    // 千万不要这样写,除非你想要先持久化分片数据到托管堆上,但这又无法使用Span<T>实现;其次Memory <T>是一个比Span<T>更大的结构体,切片往往相对较慢。
    //return SafeSum(buffer.Slice(0,bytesRead).Span());
}
static uint SafeSum(Span<byte> buffer)
{
    uint sum = 0;
    foreach (var t in buffer)
    {
        sum += t;
    }
    return sum;
}

Memory核心设计

public readonly struct Memory<T>
{
    private readonly object _object; //表示Memory能包裹的对象,EveryThing。
    private readonly int _index;
    private readonly int _length; 
    public Span<T> Span { get; } // 实际的内部缓冲区
}    

如前所述,Memory的目的是为了解决Span无法驻留到堆上的问题,也就是Memory代表的内存块并不会随方法执行栈的unwind而回收,也就是说它的内部缓冲区是有生命周期的,并不是短暂的,这就是为什么字段_object的类型被设计成object,而不是类型化为T[],就是为了通过传递IMemoryOwner来管理Span的生命周期,从而避免UAF(use-after-free)bug。

private static MemoryPool<byte> _memPool = MemoryPool<byte>.Shared;

public async Task UsageWithLifeAsync(int size)
{
    using (var owner = _memPool.Rent(size)) // 从池里租借一块IMemoryOwner包裹的内存。
    {
        await DoSomethingAsync(owner.Memory); // 把实际的内存借给异步方法使用。
    } // 作用域结束,存储的Memory<T>被回收,这里是返回内存池,有借有还,再借不难,嘿嘿。
}
// 不用担心span会随着方法执行栈unwind而回收
async Task DoSomethingAsync(Memory<byte> buffer) {
    buffer.Span[0] = 0; // 没问题
    await Something(); // 跨越await边界。
    buffer.Span[0] = 1; // 没问题
}

IMemoryOwner,顾名思义,Memory<T>拥有者,通过属性Memory来表示,如下:

public interface IMemoryOwner<T> : IDisposable
{
    Memory<T> Memory { get; }
}

所以,可以使用IMemoryOwner来转移Memory<T>内部缓冲区的所有权,从而让开发人员不必管理缓冲区。

Memory<T>内部缓冲区生命周期的管理实际上非常复杂,用法如上所诉,可以简单地理解Memory<T>通过工厂来管理Span<T>,感兴趣的同学可以自行下去研究。

How - 如何运用memory ?

如前所述, Memory<T>其实就是Span<T>heap-able类型,故它的API和span基本相同,如下:

public Memory(T[] array);
public Memory(T[] array, int start, int length);
public Memory<T> Slice(int start);// 支持sliceable
public bool TryCopyTo(Memory<T> destination);

不同的是Memory<T>有两个独一无二的API,如下:

public MemoryHandle Pin(); // 钉住_object的内存地址,即告知垃圾回收器不要回收它,我们自己管理内存。
public System.Span<T> Span { get; }// 当_object字段为数组时,提供快速索引的能力。

Span<T>一样,通常Memory<T>都是包裹数组、字符串,用法也基本相同,只是应用场景不一样而已。

Memory<T>的使用指南

  • 同步方法应该接受Span参数,异步方法应该接受Memory参数。
  • Memory<T>作为参数无返回值的同步方法,方法结束后,不应该再使用它。
  • Memory<T>作为参数返回Task的异步方法,方法结束后,不应该再使用它。
  • 同一Memory<T>实例不能同时被多个消费者使用。

所以啊,千万不要将好东西用错地方了,聪明反被聪明误,最后,弄巧成拙,嘿嘿。

总结

综上所述,和Span<T>一样,Memory<T>也是Sliceable type,它是Span无法驻留到堆上的解决方案。一般Span<T>由底层开发人员用在数据同步处理和转换方面,而高层开发人员使用Memory<T>比较多,因为它可以用于一些高级的场景,比如:异步方法、类字段、lambda表达式、泛型参数等等。两者的完美运用就能够支持不复制地流动数据,这就是数据管道应用场景(System.IO.Pipelines)。

到目前为止,作者花了三篇博客终于把这两个旗舰类型讲完了,相信认真品读这三篇博客的同学,一定会受益匪浅。后面的系列将讲两者的高级应用场景,比如数据管道(Data Pipelines )、不连续缓冲区(Discontiguous Buffers)、缓冲池(Buffer Pooling)、以及为什么让Aspnet Core Web Server变得如此高性能等。
一图胜千言:

最新一期techempower web框架基准测试传送门

最后

如果有什么疑问和见解,欢迎评论区交流。
如果你觉得本篇文章对您有帮助的话,感谢您的【推荐】。
如果你对.NET高性能编程感兴趣的话可以【关注我】,我会定期的在博客分享我的学习心得。
欢迎转载,请在明显位置给出出处及链接

延伸阅读

https://en.wikipedia.org/wiki/Reference_counting

https://msdn.microsoft.com/en-us/magazine/mt814808

https://blogs.msdn.microsoft.com/oldnewthing/20040406-00/?p=39903

https://github.com/dotnet/corefxlab/blob/master/docs/specs/memory.md

https://blogs.msdn.microsoft.com/dotnet/2018/05/30/announcing-net-core-2-1

https://docs.microsoft.com/zh-cn/dotnet/api/system.memory-1?view=netcore-2.2

https://frameworkbenchmarks.readthedocs.io/en/latest/Project-Information/Framework-Tests

https://blogs.msdn.microsoft.com/dotnet/2018/07/09/system-io-pipelines-high-performance-io-in-net

https://www.codemag.com/Article/1807051/Introducing-.NET-Core-2.1-Flagship-Types-Span-T-and-Memory-T

https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/khk3k17t(v=vs.95))

https://blogs.msdn.microsoft.com/mazhou/2018/03/25/c-7-series-part-10-spant-and-universal-memory-management

目录
相关文章
|
18天前
|
存储 缓存 数据安全/隐私保护
DMA(Direct Memory Access):直接内存访问
DMA(Direct Memory Access)是一种允许外设直接与内存进行数据传输的技术,无需 CPU 干预。它通过减轻 CPU 负担、提高数据传输效率来提升系统性能。DMA 的工作模式包括直接模式和 FIFO 模式,数据传输方式有单字传送和块传送,寻址模式有增量寻址和非增量寻址。通过缓存一致性协议、同步机制、数据校验和合理的内存管理,DMA 确保了数据在内存中的一致性和完整性。
50 0
|
3月前
|
Rust 编译器
|
4月前
|
存储 网络协议 大数据
一文读懂RDMA: Remote Direct Memory Access(远程直接内存访问)
该文档详细介绍了RDMA(远程直接内存访问)技术的基本原理、主要特点及其编程接口。RDMA通过硬件直接在应用程序间搬移数据,绕过操作系统协议栈,显著提升网络通信效率,尤其适用于高性能计算和大数据处理等场景。文档还提供了RDMA编程接口的概述及示例代码,帮助开发者更好地理解和应用这一技术。
|
3月前
|
SQL 存储 Java
关于内存安全问题,你应该了解的几点!
关于内存安全问题,你应该了解的几点!
|
3月前
|
C# 开发工具 Windows
C# 获取Windows系统信息以及CPU、内存和磁盘使用情况
C# 获取Windows系统信息以及CPU、内存和磁盘使用情况
84 0
|
4月前
|
安全 Java API
【性能与安全的双重飞跃】JDK 22外部函数与内存API:JNI的继任者,引领Java新潮流!
【9月更文挑战第7天】JDK 22外部函数与内存API的发布,标志着Java在性能与安全性方面实现了双重飞跃。作为JNI的继任者,这一新特性不仅简化了Java与本地代码的交互过程,还提升了程序的性能和安全性。我们有理由相信,在外部函数与内存API的引领下,Java将开启一个全新的编程时代,为开发者们带来更加高效、更加安全的编程体验。让我们共同期待Java在未来的辉煌成就!
83 11
|
4月前
|
安全 Java API
【本地与Java无缝对接】JDK 22外部函数和内存API:JNI终结者,性能与安全双提升!
【9月更文挑战第6天】JDK 22的外部函数和内存API无疑是Java编程语言发展史上的一个重要里程碑。它不仅解决了JNI的诸多局限和挑战,还为Java与本地代码的互操作提供了更加高效、安全和简洁的解决方案。随着FFM API的逐渐成熟和完善,我们有理由相信,Java将在更多领域展现出其强大的生命力和竞争力。让我们共同期待Java编程新纪元的到来!
131 11
|
5月前
|
数据采集 Rust 安全
Rust在网络爬虫中的应用与实践:探索内存安全与并发处理的奥秘
【8月更文挑战第31天】网络爬虫是自动化程序,用于从互联网抓取数据。随着互联网的发展,构建高效、安全的爬虫成为热点。Rust语言凭借内存安全和高性能特点,在此领域展现出巨大潜力。本文探讨Rust如何通过所有权、借用及生命周期机制保障内存安全;利用`async/await`模型和`tokio`运行时处理并发请求;借助WebAssembly技术处理动态内容;并使用`reqwest`和`js-sys`库解析CSS和JavaScript,确保代码的安全性和可维护性。未来,Rust将在网络爬虫领域扮演更重要角色。
92 1
|
5月前
|
设计模式 uml
在电脑主机(MainFrame)中只需要按下主机的开机按钮(on()),即可调用其它硬件设备和软件的启动方法,如内存(Memory)的自检(check())、CPU的运行(run())、硬盘(Hard
该博客文章通过一个电脑主机启动的示例代码,展示了外观模式(Facade Pattern)的设计模式,其中主机(MainFrame)类通过调用内部硬件组件(如内存、CPU、硬盘)和操作系统的启动方法来实现开机流程,同时讨论了外观模式的优缺点。
|
5月前
|
存储 缓存 监控
托管内存(Managed Memory)
托管内存(Managed Memory)