推荐系统之冷启动问题

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介:
前言

冷启动问题同比于启动车辆,通常车正式开启之前需要有热车阶段,这个过程就是冷启动过程。冷启动在推荐系统也是常见的问题,大家知道类似于抖音、淘宝等工具,都会根据用户的兴趣去推荐内容,如果一个新用户进来,系统完全不清楚他的兴趣,该如何推荐呢?这就是本文要给大家介绍的内容。


冷启动对于一个推荐系统是至关重要的,因为新用户最初使用APP阶段也是这名用户最可能卸载APP的时候,如果新用户进入产品不能快速给用户带来价值,是非常危险的。今天介绍的内容会围绕下面这张图展开:

屏幕快照 2018-12-13 下午3.31.30.png

首先把冷启动问题归为3个类别:

  1. 系统冷启动:整个系统都是新做的,没有任何数据和经验基础

  2. 推荐主体冷启动:通常指的是缺少新注册用户的历史购买或点击数据

  3. 被推荐对象冷启动:通常指的是缺少商城中的新商品或者新的内容历史被点击或购买的数据

下面分别针对以上内容讲下处理方法。



1. 系统冷启动

1.jpeg

系统冷启动这个其实真的没太好的办法,万事开头难,系统冷启动缺少的是专家经验,建议系统在运行前务必请有经验的架构师或者产品经理参与设计,如果架构或者整个推荐策略不合理,上线后是比较难调整的。



2.推荐主体冷启动


当推荐主体冷启动时,往往是新用户进来之后,大方向上要从两个角度去想解决方案,一个方向是尽可能扩展用户画像,增加更多维度的信息。第二个方向在初期推荐的内容上也要有所策略。


2.1 扩充用户画像


79e1740dd0808063f797ed1a115332e9.png

用户画像的扩充有很多手段,常用的方法如下:

  • 账号注册信息:注册的时候可以让用户填写年龄、性别等内容、手机号等内容,同时也可以通过LBS信息了解用户的活动区域。针对这些信息可以给用户兴趣做一个初步判断,比如年轻的都市女性,往往有较高的消费能力,在推荐策略上可以推荐高规格的一些内容

  • 身份证信息:现在很多系统都需要实名认证,身份证号其实可以带来很多有用的信息,比如前两位是省级代码,34位是市级代码,7-14位是生日代码,第17位是性别代码(奇数代表男性、偶数代表女性)

  • 社交账号登录:如果系统可以设计成支持淘宝、微信等账号登录,也可以通过这些系统拿到部分用户画像信息

  • 预采集:现在很多APP,当用户初次进入都有一个兴趣爱好勾选的按钮,这个就是为了解决冷启动的一个手段,在推荐之前先通过用户标记获取用户信息

  • 数据交换:注册的时候其实可以拿到用户的手机号码,现在有很多卖数据的公司都提供用户画像数据的交易,只要提供手机号就能获取特别全的用户数据(这个貌似是个黑产业)

2.2 推荐策略

对于这种冷启动问题推荐策略有两个方向可以选择,可以结合着来使用。

  • 热门推荐法:反正也不清楚用户的信息,就挑平台上最热门的内容推荐,总归从概率层面上被大多受众认可的东西也有大概率被新用户认可

  • 老虎机算法:学名叫Bandit算法,意思是假设用户前方有10个老虎机,每个都有不同的概率出钱,用户不知道这个概率,那用户该怎么选呢,就是懵!落到冷启动问题上,就是先随便推荐用户几个不同Topic的内容(一定是不同的),看看用户的反馈再决定下一步的推荐安排



3. 被推荐对象冷启动


1.png

被推荐对象往往是平台上新增加的内容,不同于推荐主体,被推荐对象如商品、短视频、广告等,平台是有办法通过一些分析拿到内容属性的。可以通过以下两个步骤建立推荐推荐策略:

  1. 挖掘属性:先对新增内容属性进行挖掘,比如增加的是个手机,可以通过标签获取手机价格、颜色等信息,再进行下一步推荐

  2. ICF聚类:在之前推荐系统相关的文章中已经多次介绍过协同过滤算法,本质上是先将内容分类。比如新增加的是一个美女跳舞的视频,那么再找哪些用户浏览过类似的视频,就把新增视频推荐给对应的用户,这种策略本质上是一种聚类算法。比如新增内容是个红色的手机,就找到历史上购买过红色手机的用户来推荐



文末,全文针对冷启动问题的不同细节介绍了具体的一些实践路径。具体如何把其中的细节实现其实对推荐系统有很高的架构要求,比如被推荐对象冷启动问题,每当新来一个商品就需要快速的做协同过滤找到商品所属类别,这其实要依赖一个流式的计算引擎才可以实现。ok,关于架构的事情之前已经写过一些,过一段会有一个总结。感谢观看,希望能有收获~





相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
5月前
|
机器学习/深度学习 搜索推荐 TensorFlow
使用Python实现深度学习模型:个性化推荐与广告优化
【7月更文挑战第22天】 使用Python实现深度学习模型:个性化推荐与广告优化
189 71
|
5月前
|
机器学习/深度学习 搜索推荐 算法
利用机器学习算法增强IAA广告定位和预测:实现个性化广告投放以最大化收益
【7月更文第30天】在当今高度竞争的移动应用市场中,应用内广告(IAA)是许多开发者获取收入的重要途径之一。然而,传统的广告推送方式往往忽略了用户的个体差异性,导致广告效果不佳。通过运用机器学习技术,我们可以更准确地理解用户偏好,从而实现个性化的广告推送。
360 0
|
算法 UED 开发者
推荐算法真的是用户最优选择吗
简述推荐算法真的是用户最优选择吗
|
7月前
|
存储 搜索推荐 算法
大模型开发:在构建推荐系统时,你会考虑哪些因素?
构建推荐系统涉及关键因素:用户行为数据(理解兴趣)、物品属性(相似性分析)、上下文信息(时间、地点)、冷启动问题(新用户/物品推荐)、可扩展性与性能(高效算法)、多样性(避免单一推荐)、可解释性(增强信任)和评估优化(准确性和用户满意度)。通过综合运用这些因素,打造精准且有效的推荐服务。
152 1
|
机器学习/深度学习 存储 开发框架
推荐系统[八]算法实践总结V1:淘宝逛逛and阿里飞猪个性化推荐:召回算法实践总结【冷启动召回、复购召回、用户行为召回等算法实战】
推荐系统[八]算法实践总结V1:淘宝逛逛and阿里飞猪个性化推荐:召回算法实践总结【冷启动召回、复购召回、用户行为召回等算法实战】
推荐系统[八]算法实践总结V1:淘宝逛逛and阿里飞猪个性化推荐:召回算法实践总结【冷启动召回、复购召回、用户行为召回等算法实战】
|
机器学习/深度学习 人工智能 算法
推荐系统召回算法及架构说明
阿里巴巴技术专家傲海为大家带来推荐系统召回算法及架构说明的介绍。内容包括召回模块在推荐系统中的位置,召回算法的介绍,什么是协同过滤,以及向量召回架构的说明。
推荐系统召回算法及架构说明
|
搜索推荐 算法 UED
推荐算法如何影响我们的生活
在生活中,我们经常面对需要决策的问题时,会使用多种策略来帮我们做出决策。诸如“我应该买哪个品牌手机?”,“我应该看哪部电影?”,“中午吃什么好?”等问题。我们做出选择时一般会依赖于朋友的推荐、在线评论、网上搜索和其他方法。 网上购物的兴起只会让这个决策过程变得更加复杂,因为购物者现在面临着更多的选择。互联网让我们从物质匮乏的时代变成了物质丰富的时代! 推荐引擎是帮助我们进行决策的工具。从推荐产品、要观看的电影、微信上的朋友到朋友、要阅读的新闻文章、搜索引擎优化、餐厅等等。在某种程度上,这些算法正在改变我们的决策过程。
237 0
|
机器学习/深度学习 监控 搜索推荐
推荐系统中的偏差:主要挑战和近期突破
虽然这些系统在帮助用户发现新内容或产品方面非常有用,但它们也存在着各种偏差,可能导致效果非常差的推荐结果。今天围绕推荐系统的主要研究之一就是如何去除偏差。 在本文中,我们将深入探讨5种最普遍的推荐系统偏差,并了解一些来自谷歌、YouTube、Netflix、快手等公司的最新研究成果。
458 0
|
机器学习/深度学习 人工智能 算法
推荐系统召回算法及架构说明|学习笔记
快速学习推荐系统召回算法及架构说明
585 0
推荐系统召回算法及架构说明|学习笔记
|
机器学习/深度学习 智能设计 自然语言处理
冷启动系统优化与内容潜力预估实践
本专题共8篇内容,包含每平每屋过去一年在召回、排序和冷启动等模块中的一些探索和实践经验,本文为该专题第一篇。
1267 0