一文读懂阻塞、非阻塞、同步、异步IO

简介: 原文:一文读懂阻塞、非阻塞、同步、异步IO介绍     在谈及网络IO的时候总避不开阻塞、非阻塞、同步、异步、IO多路复用、select、poll、epoll等这几个词语。在面试的时候也会被经常问到这几个的区别。
原文: 一文读懂阻塞、非阻塞、同步、异步IO

介绍

    在谈及网络IO的时候总避不开阻塞、非阻塞、同步、异步、IO多路复用、select、poll、epoll等这几个词语。在面试的时候也会被经常问到这几个的区别。本文就来讲一下这几个词语的含义、区别以及使用方式。
Unix网络编程一书中作者给出了五种IO模型:
1、BlockingIO - 阻塞IO
2、NoneBlockingIO - 非阻塞IO
3、IO multiplexing - IO多路复用
4、signal driven IO - 信号驱动IO
5、asynchronous IO - 异步IO
这五种IO模型中前四个都是同步的IO,只有最后一个是异步IO。信号驱动IO使用的比较少,重点介绍其他几种IO以及在Java中的应用。

阻塞、非阻塞、同步、异步以及IO多路复用

    在进行网络IO的时候会涉及到用户态和内核态,并且在用户态和内核态之间会发生数据交换,从这个角度来说我们可以把IO抽象成两个阶段:1、用户态等待内核态数据准备好,2、将数据从内核态拷贝到用户态。之所以会有同步、异步、阻塞和非阻塞这几种说法就是根据程序在这两个阶段的处理方式不同而产生的。

同步阻塞

        
    当在用户态调用read操作的时候,如果这时候kernel还没有准备好数据,那么用户态会一直阻塞等待,直到有数据返回。当kernel准备好数据之后,用户态继续等待kernel把数据从内核态拷贝到用户态之后才可以使用。这里会发生两种等待:一个是用户态等待kernel有数据可以读,另外一个是当有数据可读时用户态等待kernel把数据拷贝到用户态。
    在Java中同步阻塞的实现对应的是传统的文件IO操作以及Socket的accept的过程。在Socket调用accept的时候,程序会一直等待知道有描述符就绪,并且把就绪的数据拷贝到用户态,然后程序中就可以拿到对应的数据。

同步非阻塞

        
        对比第一张同步阻塞IO的图就会发现,在同步非阻塞模型下第一个阶段是不等待的,无论有没有数据准备好,都是立即返回。第二个阶段仍然是需要等待的,用户态需要等待内核态把数据拷贝过来才能使用。对于同步非阻塞模式的处理,需要每隔一段时间就去询问一下内核数据是不是可以读了,如果内核说可以,那么就开始第二阶段等待。

IO多路复用

    IO多路复用也是同步的。
        
    IO多路复用的方式看起来跟同步阻塞是一样的,两个阶段都是阻塞的,但是IO多路复用可以实现以较小的代价同时监听多个IO。通常情况下是通过一个线程来同时监听多个描述符,只要任何一个满足就绪条件,那么内核态就返回。IO多路复用使得传统的每请求每线程的处理方式得到解耦,一个线程可以同时处理多个IO请求,然后交到后面的线程池里处理,这也是netty等框架的处理方式,所谓的reactor模式。IO多路复用的实现依赖于操作系统的select、poll和epoll,后面会详细介绍这几个系统调用。
    IO多路复用在Java中的实现方式是在Socket编程中使用非阻塞模式,然后配置感兴趣的事件,通过调用select函数来实现。select函数就是对应的第一个阶段。如果给select配置了超时参数,在指定时间内没有感兴趣事件发生的话,select调用也会返回,这也是为什么要做非阻塞模式下运行。

异步IO

        
        异步模式下,前面提到的两个阶段都不会等待。使用异步模式,用户态调用read方法的时候,相当于告诉内核数据发送给我之后告诉我一声我先去干别的事情了。在这两个阶段都不会等待,只需要在内核态通知数据准备好之后使用即可。通常情况下使用异步模式都会使用callback,当数据可用之后执行callback函数。

IO多路复用

    现在用Java开发的网络服务器通常采用IO多路复用的方式来加快网络IO操作,例如Netty、Tomcat等。IO多路复用的基础是select、poll和epoll。这三个函数是从操作系统的角度上支持的IO多路复用的操作,下面就分别来看一下这三个函数。

select

函数签名如下:

int select(int maxfdp1, fd_set *readset,fd_set *writeset,fd_set *exceptset,const struct timeval *timeout)

maxfdp1为指定的待监听的描述符的个数,因为描述符是从0开始的,所以需要加1
readset为要监听的读描述符
writeset为要监听的写描述符
exceptset为要监听的异常描述符
timeout监听没有准备好的描述符的话,多久可以返回,支持按照秒或者毫秒来配置时间
    select操作的逻辑是首先将要监听的读、写以及异常描述符拷贝到内核空间,然后遍历所有的描述符,如果有感兴趣的事件发生,那么就返回。
select在使用的过程中有三个问题:
1、被监控的fds(描述符)集合限制为1024,1024太小了
2、需要将描述符集合从用户空间拷贝到内核空间
3、当有描述符可操作的时候都需要遍历一下整个描述符集合才能知道哪个是可操作的,效率很低。

poll

函数签名如下:

  int poll(struct pollfd[] fds, unsigned int nfds, int timeout);

 poll操作与select操作类似,仍旧避免不了描述符从用户空间拷贝到内核空间,但是poll不再有1024个描述符的限制。对于事件的触发通知还是使用遍历所有描述符的方式,因此在大量连接的情况下也存在遍历低效的问题。poll函数在传递参数的时候统一的将要监听的描述符和事件封装在了pollfd结构体数组中。

epoll

    epoll有三个方法:epoll_create、epoll_ctl和epoll_wait。epoll_create是创建一个epoll句柄;epoll_ctl是注册要监听的事件类型;epoll_wait则是等待事件的产生。 通过这三个方法epoll解决了select的三个问题。
1、1024数量限制的问题
通过epoll_create方法来创建一个epoll句柄,这个句柄监听的描述符的数量不再有限制。
2、文件描述符频繁从用户空间拷贝到内核空间的问题
通过观察select的操作会发现描述符从用户空间到内核空间拷贝发生在调用select方法的时候,只要没有注册新的事件或者取消注册事件,每次拷贝的描述符都是一样的。因此epoll引入了epoll_ctl调用,该方法用于注册新事件和取消注册事件。而在epoll_wait的时候并不会拷贝描述符,描述符始终存在于内核空间,当需要修改的时候只要调用epoll_ctl修改一下内核的描述符即可。如此一来便省去了描述符来回拷贝的开销。
3、文件描述符可操作的时候遍历整个描述符集合的问题
在调用epoll_ctl注册感兴趣的事件的时候,实际上会为设置的事件添加一个回调函数,当对应的感兴趣的事件发生的时候,回调函数就会触发,然后将自己加到一个链表中。epoll_wait函数的作用就是去查看这个链表中有没有已经准备就绪的事件,如果有的话就通知应用程序处理,如此操作epoll_wait只需要遍历就绪的事件描述符即可。

epoll在Java中的使用

    目前针对Java服务器的非阻塞编程基本都是基于epoll的。在进行非阻塞编程的时候有两个步骤:1、注册感兴趣的事情;2、调用select方法,查找感兴趣的事件。

注册感兴趣的事件

    我们在编写Socket的非阻塞代码的时候需要在Selector上注册感兴趣的事情,通常写法是serverSocketChannel.register(selector, SelectionKey.XXX)。来看一下这行代码背后的执行逻辑是什么样的。
        
注册的时候实际执行的是EPollSelectorImp。该方法主要有以下三步:
1、implRegister方法。在fdToKey的Map中插入channel对应的文件描述法和SelectionKey的映射,当做注册Channel、关闭Channel、取消注册等操作是都是操作此Map。
2、往pollWrapper[Epoll实例]中放入channel实例。
3、往keys[HashSet]中放入SelectionKey

select方法

    通过Java的Selector.select方法来获取准备好的键的时候实际执行的代码如下:
        
首先调用EPollArrayWrapper的poll方法,该方法做两件事:1、调用epollCtl方法向epoll中注册感兴趣的事件;2、调用epollWait方法返回已就绪的文件描述符集合
然后调用updateSelectedKeys方法调用把epoll中就绪的文件描述符加到ready队列中等待上层应用处理, updateSelectedKeys通过fdToKey查找文件描述符对应的SelectionKey,并在SelectionKey对应的channel中添加对应的事件到ready队列。

水平触发LT与边缘触发ET

    epoll支持两种触发模式,分别是水平触发和边缘触发。
    LT是缺省的工作方式,并且同时支持block和no-block socket。在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的。
    ET是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核会通知你一次,并且除非你做了某些操作导致那个文件描述符不再为就绪状态了,否则不会再次发送通知。
    可以看到,本来内核在被DMA中断,捕获到IO设备来数据后,只需要查找这个数据属于哪个文件描述符,进而通知线程里等待的函数即可,但是,LT要求内核在通知阶段还要继续再扫描一次刚才所建立的内核fd和io对应的那个数组,因为应用程序可能没有真正去读上次通知有数据后的那些fd,这种沟通方式效率是很低下的,只是方便编程而已;

    JDK并没有实现边缘触发,关于边缘触发和水平触发的差异简单列举如下,边缘触发的性能更高,但编程难度也更高,netty就重新实现了Epoll机制,采用边缘触发方式;另外像nginx等也采用的是边缘触发。

 

----------------------------------------------------------------

欢迎关注我的微信公众号:yunxi-talk,分享Java干货,进阶Java程序员必备。

目录
相关文章
|
2月前
|
并行计算 数据处理 Python
Python并发编程迷雾:IO密集型为何偏爱异步?CPU密集型又该如何应对?
在Python的并发编程世界中,没有万能的解决方案,只有最适合特定场景的方法。希望本文能够为你拨开迷雾,找到那条通往高效并发编程的光明大道。
47 2
|
3月前
|
开发框架 并行计算 算法
揭秘Python并发神器:IO密集型与CPU密集型任务的异步革命,你竟还傻傻分不清?
揭秘Python并发神器:IO密集型与CPU密集型任务的异步革命,你竟还傻傻分不清?
53 4
|
2月前
|
存储 缓存 算法
如何优化阻塞IO的性能?
【10月更文挑战第6天】如何优化阻塞IO的性能?
49 5
|
2月前
|
数据库
同步IO模型是一种常见的编程模型
【10月更文挑战第5天】同步IO模型是一种常见的编程模型
23 2
|
3月前
|
算法 Java 程序员
解锁Python高效之道:并发与异步在IO与CPU密集型任务中的精准打击策略!
在数据驱动时代,高效处理大规模数据和高并发请求至关重要。Python凭借其优雅的语法和强大的库支持,成为开发者首选。本文将介绍Python中的并发与异步编程,涵盖并发与异步的基本概念、IO密集型任务的并发策略、CPU密集型任务的并发策略以及异步IO的应用。通过具体示例,展示如何使用`concurrent.futures`、`asyncio`和`multiprocessing`等库提升程序性能,帮助开发者构建高效、可扩展的应用程序。
149 0
|
4月前
|
C# 开发者 设计模式
WPF开发者必读:命令模式应用秘籍,轻松简化UI与业务逻辑交互,让你的代码更上一层楼!
【8月更文挑战第31天】在WPF应用开发中,命令模式是简化UI与业务逻辑交互的关键技术,通过将请求封装为对象,实现UI操作与业务逻辑分离,便于代码维护与扩展。本文介绍命令模式的概念及实现方法,包括使用`ICommand`接口、`RelayCommand`类及自定义命令等方式,并提供示例代码展示如何在项目中应用命令模式。
56 0
|
4月前
|
Ubuntu Linux
内核实验(九):添加IO驱动的阻塞读写功能
本文通过修改内核模块代码,介绍了如何在Linux内核中为IO驱动添加阻塞读写功能,使用等待队列和条件唤醒机制来实现读写操作的阻塞和非阻塞模式,并在Qemu虚拟机上进行了编译、部署和测试。
22 0
|
4月前
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
5月前
|
Java 大数据
解析Java中的NIO与传统IO的区别与应用
解析Java中的NIO与传统IO的区别与应用
|
3月前
|
Java 大数据 API
Java 流(Stream)、文件(File)和IO的区别
Java中的流(Stream)、文件(File)和输入/输出(I/O)是处理数据的关键概念。`File`类用于基本文件操作,如创建、删除和检查文件;流则提供了数据读写的抽象机制,适用于文件、内存和网络等多种数据源;I/O涵盖更广泛的输入输出操作,包括文件I/O、网络通信等,并支持异常处理和缓冲等功能。实际开发中,这三者常结合使用,以实现高效的数据处理。例如,`File`用于管理文件路径,`Stream`用于读写数据,I/O则处理复杂的输入输出需求。
242 12