06 聚类算法 - 代码案例二 - K-Means算法和Mini Batch K-Means算法比较

简介:

03 聚类算法 - K-means聚类
04 聚类算法 - 代码案例一 - K-means聚类
05 聚类算法 - 二分K-Means、K-Means++、K-Means||、Canopy、Mini Batch K-Means算法

常规操作:

import time  
import numpy as np  
import matplotlib.pyplot as plt  
import matplotlib as mpl
from sklearn.cluster import MiniBatchKMeans, KMeans  
from sklearn.metrics.pairwise import pairwise_distances_argmin  
from sklearn.datasets.samples_generator import make_blobs  

## 设置属性防止中文乱码
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

一、初始化三个中心
centers = [[1, 1], [-1, -1], [1, -1]] 
clusters = len(centers)  #聚类的数目为3    

产生3000组二维的数据,中心是意思三个中心点,标准差是0.7

X, Y = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7, random_state=28)  

二、构建kmeans算法
k_means = KMeans(init='k-means++', n_clusters=clusters, random_state=28)
t0 = time.time() #当前时间
k_means.fit(X)  #训练模型
km_batch = time.time() - t0  #使用kmeans训练数据的消耗时间
print ("K-Means算法模型训练消耗时间:%.4fs" % km_batch)

K-Means算法模型训练消耗时间:0.1861s


三、构建MiniBatchKMeans算法
batch_size = 100
mbk = MiniBatchKMeans(init='k-means++', n_clusters=clusters, 
    batch_size=batch_size, random_state=28)  
t0 = time.time()  
mbk.fit(X)  
mbk_batch = time.time() - t0  
print ("Mini Batch K-Means算法模型训练消耗时间:%.4fs" % mbk_batch)

Mini Batch K-Means算法模型训练消耗时间:0.1511s


四、预测结果
km_y_hat = k_means.predict(X)
mbkm_y_hat = mbk.predict(X)
五、获取聚类中心点并聚类中心点进行排序(方便后面画图)
#输出kmeans聚类中心点
k_means_cluster_centers = k_means.cluster_centers_

#输出mbk聚类中心点
mbk_means_cluster_centers = mbk.cluster_centers_
print ("K-Means算法聚类中心点:\ncenter=", k_means_cluster_centers)
print ("Mini Batch K-Means算法聚类中心点:\ncenter=", mbk_means_cluster_centers)
order = pairwise_distances_argmin(k_means_cluster_centers,  
                                  mbk_means_cluster_centers) 

K-Means算法聚类中心点:
center= [[-1.0600799 -1.05662982]
[ 1.02975208 -1.07435837]
[ 1.01491055 1.02216649]]
Mini Batch K-Means算法聚类中心点:
center= [[ 0.99602094 1.10688195]
[-1.00828286 -1.05983915]
[ 1.07892315 -0.94286826]]


六、 画图

plt.figure(figsize=(12, 6), facecolor='w')
plt.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.9)
cm = mpl.colors.ListedColormap(['#FFC2CC', '#C2FFCC', '#CCC2FF'])
cm2 = mpl.colors.ListedColormap(['#FF0000', '#00FF00', '#0000FF'])
1、原始数据
plt.subplot(221)
plt.scatter(X[:, 0], X[:, 1], c=Y, s=6, cmap=cm, edgecolors='none')
plt.title(u'原始数据分布图')
plt.xticks(())
plt.yticks(())
plt.grid(True)
2、K-Means算法聚类结果图
plt.subplot(222)
plt.scatter(X[:,0], X[:,1], c=km_y_hat, s=6, cmap=cm,edgecolors='none')
plt.scatter(k_means_cluster_centers[:,0],  
     k_means_cluster_centers[:,1],c=range(clusters),s=60,cmap=cm2,edgecolors='none')
plt.title(u'K-Means算法聚类结果图')
plt.xticks(())
plt.yticks(())
plt.text(-3.8, 3,  'train time: %.2fms' % (km_batch*1000))  
plt.grid(True)
3、Mini Batch K-Means算法聚类结果图
plt.subplot(223)
plt.scatter(X[:,0], X[:,1], c=mbkm_y_hat, s=6, cmap=cm,edgecolors='none')
plt.scatter(mbk_means_cluster_centers[:,0], 
    mbk_means_cluster_centers[:,1],c=range(clusters),s=60,cmap=cm2,edgecolors='none')
plt.title(u'Mini Batch K-Means算法聚类结果图')
plt.xticks(())
plt.yticks(())
plt.text(-3.8, 3,  'train time: %.2fms' % (mbk_batch*1000))  
plt.grid(True)
different = list(map(lambda x: (x!=0) & (x!=1) & (x!=2), mbkm_y_hat))
for k in range(clusters):  
    different += ((km_y_hat == k) != (mbkm_y_hat == order[k]))
identic = np.logical_not(different)
different_nodes = len(list(filter(lambda x:x, different)))
4、Mini Batch K-Means和K-Means算法预测结果不同的点
plt.subplot(224)
plt.plot(X[identic, 0], X[identic, 1], 'w', markerfacecolor='#bbbbbb', marker='.')  
plt.plot(X[different, 0], X[different, 1], 'w', markerfacecolor='m', marker='.')  
plt.title(u'Mini Batch K-Means和K-Means算法预测结果不同的点')  
plt.xticks(())  
plt.yticks(())
plt.text(-3.8, 2,  'different nodes: %d' % (different_nodes))  
plt.show()

07 聚类算法 - 代码案例三 - K-Means算法和Mini Batch K-Means算法效果评估

相关文章
|
10天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
13天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
22天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
25 3
|
21天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
27天前
|
存储 算法 搜索推荐
这些算法在实际应用中有哪些具体案例呢
【10月更文挑战第19天】这些算法在实际应用中有哪些具体案例呢
30 1
|
1月前
|
存储 缓存 算法
如何通过优化算法和代码结构来提升易语言程序的执行效率?
如何通过优化算法和代码结构来提升易语言程序的执行效率?
|
1月前
|
搜索推荐
插入排序算法的讲解和代码
【10月更文挑战第12天】插入排序是一种基础的排序算法,理解和掌握它对于学习其他排序算法以及数据结构都具有重要意义。你可以通过实际操作和分析,进一步深入了解插入排序的特点和应用场景,以便在实际编程中更好地运用它。
|
27天前
|
缓存 分布式计算 监控
优化算法和代码需要注意什么
【10月更文挑战第20天】优化算法和代码需要注意什么
18 0
|
28天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
5天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
下一篇
无影云桌面